(I) 1) $x^2+x-2=0 \iff x \in \S-2; 1$ (calcular Determined laisses an lecteur) donc la fonction f est définie sur $\mathfrak{D}=\mathbb{R}\setminus \S-2; 1$. Comme f est une fonction rationnelle définie sur \mathfrak{D} , elle est dérivable sur \mathfrak{D} et : $\forall x \in \mathbb{R}$, $f'(x)=\frac{(4x-1)(x^2+x-2)-(2x+1)(2x^2-x+2)}{(x^2+x-2)^2}$

 $\text{Noit } f'(x) = \frac{4x^3 + 4x^2 - 8x - x^2 - x + 2 - 4x^3 + 2x^2 - 4x - 2x^2 + x - 2}{(x^2 + x - 2)^2} = \frac{3x^2 - 12x}{(x^2 + x - 2)^2}$

Si $x \in \mathcal{D}$, on a $(x^2 + x - 2)^2 > 0$ done f'(x) est du signe de $3x^2 - 12x = 3x(x - 4)$, d'où:

x		٤ .	0	1 4	4 + 00
3×	_	- (-	+	+
2 - 4	_	-	_	- ,	+
6'(x)	+	+ ,	1	- (+
f	2 +00	1	1 700	+00	5 7

ana
$$f(0) = \frac{2}{-2} = -1$$
 et
$$f(4) = \frac{32 - 4 + 2}{16 + 4 - 2} = \frac{30}{18} = \frac{5}{3}$$

• Si $x \in \mathbb{D} \setminus \{0\}$, on a $f(x) = \frac{x - \frac{1}{x} + a \times \frac{1}{x^2}}{1 + \frac{1}{x} - a \times \frac{1}{x^2}}$. On, for produit et somme, on a:

 $\lim_{x\to-\infty} \left(2-\frac{1}{x}+2\times\frac{1}{x^2}\right) = 2-0+2\times0 = 2 \quad \text{at lim} \left(1+\frac{1}{x}-2\times\frac{1}{x^2}\right) = 1+0-2\times0 = 1, \text{ done for quotient.}$ $\lim_{x\to-\infty} f(x) = \frac{2}{1} = 2. \text{ The raisonnement analogue prouve que $\lim_{x\to+\infty} f(x) = 2.}$

. oc²+oc-2 est un trinôme du second degré, donc il est du signe de a=1 sanf entre ses racines, d'où →

æ	- 00		-2	1	+∞	7
22-421-2		+	þ	 þ	+	Ī

• On a lim $(2x^2-x+2)=8+2+2=12>0$ et lim $(x^2+x-2)=0$; plus $x\to -2$ précisément d'après de tablean*, on a lim $(x^2+x-2)=0^+$ et lim $(x^2+x-2)=0^-$, ce $x\to -2$ $x\to -2$ $x\to -2$

qui permet de déduire par quotient que lim $f(x) = +\infty$ et lim $f(x) = -\infty$.

• On a dim $(2x^2-x+2)=2-1+2=3$ pet lim $(x^2+x-2)=0$; plus précisément, d'après le tableau*, on a clim $(x^2+x-2)=0$ et lim $(x^2+x-2)=0^+$, a qui $x \to 1$

entraîne, far quotient, que lim $f(x) = -\infty$ et lim $f(x) = +\infty$.

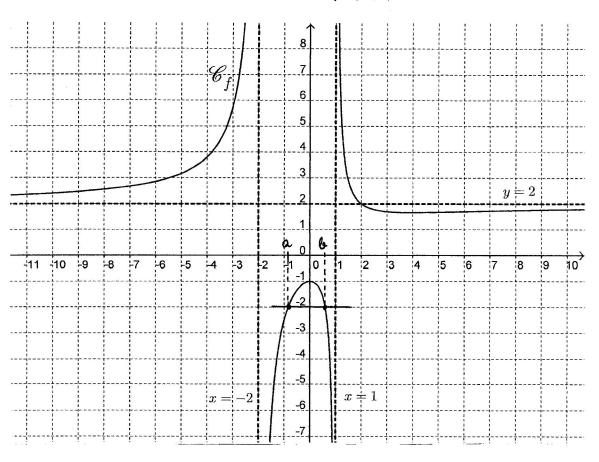
- 2). Comme lim f(x)=2 et lim f(x)=2, la droite d'équation y=2 est asymptote à G_{g} en $-\infty$ et en $+\infty$.
 - Comme elim $f(x) = +\infty$ et lim $f(x) = -\infty$, les droites d'équations x = 1 et $x \to -2$ $x \to -2$ Sont asymptotes à $x \to -2$ Cy Voir droites en pointillées en la figure.

- 3) . D'après le tableau des variations de f, on a: $\forall x \in]-\infty; -2[$, f(x)>2>-2 et $\forall x \in]1; +\infty[$, $f(x)>\frac{\pi}{3}>-2$. Par conséquent l'équation f(x)=-2 ne posséde an curre solution dans $]-\infty; -2[\cup]1; +\infty[$
 - f est continue (car dérivable, voir 1.) et strictement croissante sur]-2;0], on a dim $f(x) = -\infty$, f(o) = -1 donc $-2 \in$ lim f(x); f(o) et d'après le corollaire $x \to -2$ x > -2

du T.V.I., l'équation f(x) = -2 possède une unique solution a dans]-2;0]. D'après la calculatrice (méthode par balayage), on a : -0,85 < a < -0,84

• f est continue (car dirivable, voir 1.) et strictement décroissante sur]0;1[, on a f(0)=-1, lim $f(x)=-\infty$ donc $-2\in$ lim f(x),f(0)[et d'après le viollaire $x\to 1$

du T.V.I., l'équation f(x)=-2 possède une unique solution le dans]0;1[. D'après la calculatrice (méthode far balayage), on a: 0,59 < le < 0,6



 $|\mathbf{II}|\mathbf{1}|\mathbf{a}|$ h est dérivable (donc également continue) sur \mathbb{R} par produit et somme et pour tout $x \in \mathbb{R}, h'(x) = 3x^2 - 12x = 3x(x-4)$. On en déduit le tableau suivant :

x	$-\infty$		0		4	α	$+\infty$
3x		_	0	+		+	
x-4		_		_	0	+	
h'(x)		+	0	_	0	+	
h	$-\infty$		-6		^ -38	_0	$+\infty$

((détails :
$$h(0) = 0^3 - 6 \times 0^2 - 6 = -6$$
 et $h(4) = 4^3 - 6 \times 4^2 - 6 = -38$))

- Si $x \neq 0$, on a $h(x) = x^3 \left(1 \frac{6}{x} \frac{6}{x^3}\right)$. Par produit et somme, on a $\lim_{x \to +\infty} \left(1 \frac{6}{x} \frac{6}{x^3}\right) = 1 + 0 + 0 = 1$ et $\lim_{x \to +\infty} x^3 = +\infty$ donc par produit $\lim_{x \to +\infty} h(x) = +\infty$. On a $\lim_{x \to -\infty} x^3 = -\infty$ et par produit $\lim_{x \to -\infty} (-6x^2) = -\infty$ donc par somme $\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} (x^3 3x^2 6) = -\infty$.
- 1)b) D'après son tableau des variations, on voit que h possède un maximum égal à −6 sur $]-\infty;4]$. Ainsi, pour tout $x\in]-\infty;4]$, on a $h(x)\leqslant -6<0$, ce qui prouve que l'équation h(x) = 0 ne possède aucune solution dans $]-\infty;4]$.
- La fonction h est continue et strictement croissante sur $]4; +\infty[$; on a h(4) = -38, $\lim_{x\to +\infty} h(x) = +\infty$ donc $0 \in \left[h(4); \lim_{x\to +\infty} h(x)\right]$ et d'après le corollaire du théorème des valeurs intermédiaires, l'équation h(x) = 0 possède une unique solution α dans $[4; +\infty[$.
- Bilan : l'équation h(x) = 0 possède pour unique solution α dans \mathbb{R} .
- La calculatrice (méthode par balayage) fournit : $6, 15 < \alpha < 6, 16$.
- 1)c) On déduit du tableau des variations de h complété (voir 1.a.):

x	$-\infty$		α		$+\infty$
h(x)		_	0	+	

- **2)a)** On peut écrire $\sqrt{x^2+1} = u[v(x)]$, avec $v: x \mapsto x^2+1$ et $u: x \mapsto \sqrt{x}$.
- On a par somme : $\lim_{x \to -\infty} (x^2 + 1) = +\infty$, soit $\lim_{x \to -\infty} v(x) = +\infty$. D'autre part, $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} \sqrt{x} = +\infty$ donc par composition $\lim_{x \to -\infty} \sqrt{x^2 + 1} = +\infty$ (1). D'autre part $\lim_{x \to -\infty} x^2 = +\infty$ et par produit $\lim_{x \to -\infty} (-9x) = +\infty$.

Donc par somme, $\lim_{x\to-\infty}(x^2-9x-4)=-\infty$ (2). D'après (1) et (2), on déduit par produit que $\lim_{x\to-\infty}f(x)=+\infty$.

• On a par somme : $\lim_{x \to +\infty} (x^2 + 1) = +\infty$, soit $\lim_{x \to +\infty} v(x) = +\infty$. D'autre part, $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} \sqrt{x} = +\infty$ donc par composition $\lim_{x \to +\infty} \sqrt{x^2 + 1} = +\infty$ (3). D'autre part, si $x \neq 0$, $x^2 - 9x - 4 = x^2 \left(1 - \frac{9}{x} - \frac{4}{x^2}\right)$. Par produit et somme, on a $\lim_{x \to +\infty} \left(1 - \frac{9}{x} - \frac{4}{x^2}\right) = 1 + 0 + 0 = 1$. Comme $\lim_{x \to +\infty} x^2 = +\infty$, on obtient par produit $\lim_{x \to +\infty} (x^2 - 9x - 4) = +\infty ^{(4)}.$

D'après (3) et (4), on déduit par produit que $\lim_{x\to +\infty} f(x) = +\infty$.

2)b) On a $f = u\sqrt{v}$, où $u: x \mapsto x^2 - 9x - 4$ est dérivable sur \mathbb{R} (par produit et somme) et $v: x \mapsto x^2 + 2$ est dérivable (par somme) et strictement positive sur \mathbb{R} . La fonction f est donc dérivable sur \mathbb{R} par composition et produit et :

$$f' = u'\sqrt{v} + u(\sqrt{v})' = u'\sqrt{v} + u\frac{v'}{2\sqrt{v}}.$$

Ainsi, si
$$x \in \mathbb{R}$$
, $f'(x) = (2x - 9)\sqrt{x^2 + 2} + (x^2 - 9x - 4)\frac{2x}{2\sqrt{x^2 + 2}}$,

$$d'où f'(x) = \frac{(2x-9)\sqrt{x^2+2}^2}{\sqrt{x^2+2}} + \frac{x(x^2-9x-4)}{\sqrt{x^2+2}},$$

$$d'où f'(x) = \frac{(2x-9)(x^2+2) + x^3 - 9x^2 - 4x}{\sqrt{x^2+2}} = \frac{2x^3 + 4x - 9x^2 - 18 + x^3 - 9x^2 - 4x}{\sqrt{x^2+2}},$$
soit $f'(x) = \frac{3x^3 - 18x^2 - 18}{\sqrt{x^2+2}} = \frac{3(x^3 - 6x^2 - 6)}{\sqrt{x^2+2}} = \frac{3h(x)}{\sqrt{x^2+2}}.$

2)c) Comme 3>0 et $\sqrt{x^2+2}>0$, f'(x) est du signe de h(x). D'où, d'après 1.c. et 2.a.:

x	$-\infty$		α		$+\infty$
f'(x)		_	0	+	
f	$+\infty$		$f(\alpha)$		$+\infty$