Correction du devoir de Pâques

• Exercice I

- 1) g est dérivable sur \mathbb{R} par composition, somme et produit et pour tout $x \in \mathbb{R}$, $g'(x) = e^x[\cos(2x) + 2\sin(2x)] + e^x[-2\sin(2x) + 4\cos(2x)] = 5e^x\cos(2x)$.
- 2) On déduit du calcul précédent que pour tout $x \in \mathbb{R}$, $\frac{1}{5}g'(x) = e^x \cos(2x)$, ce qui prouve que $\frac{1}{5}g$ est une primitive sur \mathbb{R} de la fonction $x \mapsto e^x \cos(2x)$. Par conséquent,

$$\int_0^{\pi} e^x \cos(2x) \, dx = \left[\frac{1}{5} e^x [\cos(2x) + 2\sin(2x)] \right]_0^{\pi} = \frac{1}{5} e^\pi (\underbrace{\cos 2\pi}_1 + 2\underbrace{\sin 2\pi}_0) - \frac{1}{5} e^0 (\underbrace{\cos 0}_1 + 2\underbrace{\sin 0}_0),$$

$$d'où \int_0^{\pi} e^x \cos(2x) \, dx = \frac{1}{5} (e^\pi - 1).$$

3) On a I + J =
$$\int_0^{\pi} e^x \cos^2 x \, dx + \int_0^{\pi} e^x \sin^2 x \, dx$$
 $= \int_0^{\pi} (e^x \cos^2 x + e^x \sin^2 x) \, dx$, soit I + J = $\int_0^{\pi} e^x (\underbrace{\cos^2 x + \sin^2 x}) \, dx = \int_0^{\pi} e^x \, dx = [e^x]_0^{\pi} = e^{\pi} - 1$.

D'autre part,
$$I - J = \int_0^{\pi} e^x \cos^2 x \, dx - \int_0^{\pi} e^x \sin^2 x \, dx = \int_0^{\pi} \int_0^{\pi} (e^x \cos^2 x - e^x \sin^2 x) \, dx$$
, soit $I - J = \int_0^{\pi} e^x (\underbrace{\cos^2 x - \sin^2 x}_{\cos^2 x}) \, dx = \int_0^{\pi} e^x \cos(2x) \, dx = \frac{1}{5} (e^{\pi} - 1)$, d'après 2).

Ainsi, I et J sont solutions du système
$$\left\{ \begin{array}{ll} I+J=e^{\pi}-1 & \quad \ (1) \\ I-J=\frac{1}{5}(e^{\pi}-1) & \quad \ (2) \end{array} \right. .$$

En additionnant membre à membre (1) et (2), on obtient $2I = \frac{6}{5}(e^{\pi} - 1)$, soit $I = \frac{3}{5}(e^{\pi} - 1)$. Enfin, $I = e^{\pi} - 1 - I = \frac{2}{5}(e^{\pi} - 1)$.

• Exercice II

1. (a) La fonction f est dérivable sur $\mathbb{R}\setminus\{2\}$ par composition et quotient et : $\forall x\in\mathbb{R}\setminus\{2\}: f'(x)=\frac{(2-x)\times(-\mathrm{e}^{-x})-(-1)\times\mathrm{e}^{-x}}{(2-x)^2}=\frac{(x-1)\mathrm{e}^{-x}}{(2-x)^2}\;.$ Si $x\in\mathbb{R}\setminus\{2\}$, on a $e^{-x}>0$ et $(2-x)^2>0$ donc f'(x) est du signe de x-1, d'où :

x	$-\infty$	1		$2 + \infty$
f'(x)	_	0	+	+
f	$+\infty$	$\frac{1}{e}$	$+\infty$	$-\infty$

(Détail :
$$f(1) = \frac{e^{-1}}{2-1} = \frac{1}{e}$$
)

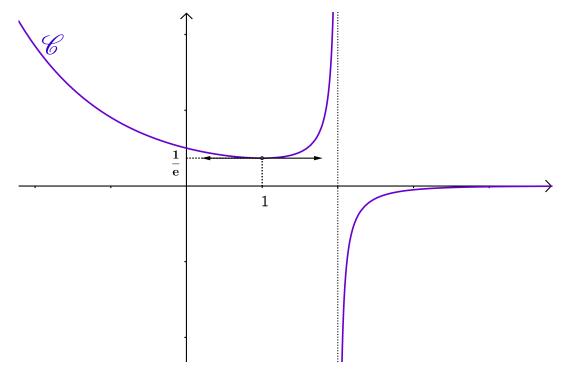
Justification des limites:

- Si $x \in \mathbb{R} \setminus \{2\}$, on a $f(x) = \frac{1}{(2-x)e^x}$.

 On a $\lim_{x \to +\infty} e^x = +\infty$ et par somme $\lim_{x \to +\infty} (2-x) = -\infty$ donc par produit $\lim_{x \to +\infty} (2-x)e^x = -\infty$ puis par quotient $\lim_{x \to +\infty} f(x) = 0$.

 Si x < 2, on a par produit $(2-x)e^x > 0$. D'autre part, $(2-x)e^x = 2e^x xe^x$.
- Or $\lim_{x \to -\infty} 2e^x = 2 \times 0 = 0$ et $\lim_{x \to -\infty} xe^x = 0$ donc par somme $\lim_{x \to -\infty} (2 x)e^x = 0^+$ puis par quotient $\lim_{x \to -\infty} f(x) = +\infty$.

Voici à titre de curiosité l'allure du graphe \mathscr{C} de la fonction f:



- (b) D'après le tableau des variations précédent, la fonction f est décroissante sur l'intervalle [0;1]. Par conséquent, lorsque $0 \leqslant x \leqslant 1$, on a $f(1) \leqslant f(x) \leqslant f(0)$, c'est-à-dire $\frac{1}{2} \leqslant f(x) \leqslant \frac{1}{2}$
- (a) Soit $(a,b) \in \mathbb{R}^2$ et $H: x \mapsto (ax+b)e^{-x}$. La fonction H est dérivable sur \mathbb{R} par composition, somme et produit et $\forall x \in \mathbb{R}, H'(x) = a \times e^{-x} + (ax+b) \times (-e^{-x}) =$ $(-ax+a-b)e^{-x}$. Pour que H soit une primitive de $h: x \mapsto (x+2)e^{-x}$ sur \mathbb{R} (c'est-à-dire pour que H' = h sur \mathbb{R}), il suffit donc que les réels a et b soient solutions du système :

$$\begin{cases} -a = 1 \\ a - b = 2 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = -3 \end{cases}$$

Une primitive de h sur \mathbb{R} est donc $H: x \mapsto (-x-3)e^{-x}$

$$\hookrightarrow$$
 On a $J = \int_0^1 h(x) dx$ donc $J = [H(x)]_0^1 = [(-x - 3)e^{-x}]_0^1$, d'où : $J = -4e^{-1} - (-3)e^{-0} = 3 - \frac{4}{e}$.

(b) Si
$$x \in [0;1]$$
, on a $\frac{1}{e} \leqslant f(x) \leqslant \frac{1}{2}$ donc comme $x^2 \geqslant 0$, on a :
$$\frac{1}{e} x^2 \leqslant x^2 f(x) \leqslant \frac{1}{2} x^2 \ .$$

Par croissance de l'intégrale (vu que $0 \le 1$), on déduit que :

$$\int_0^1 \frac{1}{e} x^2 dx \leqslant \int_0^1 x^2 f(x) dx \leqslant \int_0^1 \frac{1}{2} x^2 dx$$
 soit $\left[\frac{1}{3e} x^3\right]_0^1 \leqslant K \leqslant \left[\frac{1}{6} x^3\right]_0^1$, ou encore : $\frac{1}{3e} \leqslant K \leqslant \frac{1}{6}$.

- (c) On a $J+K=\int_0^1 (2+x){\rm e}^{-x}\,{\rm d}x+\int_0^1 x^2 f(x)\,{\rm d}x,$ d'où par linéarité de l'intégrale : $J+K=\int_0^1 \left[(2+x){\rm e}^{-x}+\frac{x^2{\rm e}^{-x}}{2-x}\right]{\rm d}x=\int_0^1 \frac{(2-x)(2+x){\rm e}^{-x}+x^2{\rm e}^{-x}}{2-x}\,{\rm d}x\,,$ d'où : $J+K=\int_0^1 \frac{(2^2-x^2){\rm e}^{-x}+x^2{\rm e}^{-x}}{2-x}\,{\rm d}x=\int_0^1 \frac{4{\rm e}^{-x}}{2-x}\,{\rm d}x=4\int_0^1 \frac{{\rm e}^{-x}}{2-x}\,{\rm d}x\,\,({\rm par})\,\,({\rm par$
- (d) On a $\frac{1}{3e} \leqslant K \leqslant \frac{1}{6}$ donc $3 \frac{4}{e} + \frac{1}{3e} \leqslant J + K \leqslant 3 \frac{4}{e} + \frac{1}{6}$, soit : $3 \frac{11}{3e} \leqslant 4I \leqslant \frac{19}{6} \frac{4}{e}$, d'où $\frac{3}{4} \frac{11}{12e} \leqslant I \leqslant \frac{19}{24} \frac{1}{e}$ (vu que 4 > 0). Or $\frac{3}{4} \frac{11}{12e} \approx 0,41277718$ et $\frac{19}{24} \frac{1}{e} \approx 0,42378723$ donc $\underbrace{I \approx 0,42}_{\text{à } 10^{-2} \text{ près}}$.