Corrigé du contrôle de Spécialité Mathématiques n°1

I Cf cours.

II a divise b et a divise c, donc il existe des entiers relatifs k et k' tels que b = ka et c = k'a. On a alors $ac^2 + b^2c - b^3 = a(k'a)^2 + (ka)^2k'a - (ka)^3$, d'où $ac^2 + b^2c - b^3 = (k'^2 + k^2k' - k^3)a^3$, soit $ac^2 + b^2c - b^3 = Ka^3$, avec $K = k'^2 + k^2k' - k^3 \in \mathbb{Z}$, vu que k et k' sont dans \mathbb{Z} , ce qui prouve que a^3 divise $ac^2 + b^2c - b^3$.

III On a $n^5 - 9n^3 = n^3(n^2 - 9)$, soit $n^5 - 9n^3 = kn^3$, avec $k = n^2 - 9 \in \mathbb{Z}$ (vu que $n \in \mathbb{Z}$), ce qui prouve que n^3 divise $n^5 - 9n^3$.

On a également $n^5 - 9n^3 = n^3 \underbrace{(n-3)(n+3)}_{n^2-9}$, soit $n^5 - 9n^3 = k'(n+3)$, avec $k' = n^3(n-3) \in \mathbb{Z}$ (vu que $n \in \mathbb{Z}$), ce qui prouve que n+3 divise $n^5 - 9n^3$.

[IV] 3 divise a (resp. 11 divise b) donc il existe $k_1 \in \mathbb{Z}$ (resp. $k_2 \in \mathbb{Z}$) tel que $a = 3k_1$ (resp. $b = 11k_2$). On a alors :

$$22a^{2} + 9b - 30ab = 22(3k_{1})^{2} + 9 \times 11k_{2} - 30 \times 3k_{1} \times 11k_{2}$$
$$= 99(2k_{1}^{2} + k_{2} - 10k_{1}k_{2})$$
$$= 99k$$

avec $k = 2k_1^2 + k_2 - 10k_1k_2 \in \mathbb{Z}$ (vu que $k_1 \in \mathbb{Z}$ et $k_2 \in \mathbb{Z}$), ce qui prouve que $22a^2 + 9b - 30ab$ est divisible par 99.

$$\boxed{\mathbf{V}}$$
 a) On a $(x^2 + 2y^2)^2 = (x^2)^2 + 2 \times x^2 \times 2y^2 + (2y^2)^2$, soit $(x^2 + 2y^2)^2 = x^4 + (2xy)^2 + 4y^4$.

b) En prenant x = a et y = b, la relation précédente entraı̂ne :

$$a^{4} + 4b^{4} = (a^{2} + 2b^{2})^{2} - (2ab)^{2}$$
$$= (a^{2} + 2b^{2} - 2ab)(a^{2} + 2b^{2} + 2ab)$$
$$= k(a^{2} + 2b^{2} + 2ab)$$

avec $k = a^2 + 2b^2 - 2ab \in \mathbb{Z}$ (vu que $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$), ce qui prouve que $a^2 + 2b^2 + 2ab$ divise $a^4 + 4b^4$.

 $\boxed{\mathbf{VI}}$ Soit d un entier divisant à la fois 5n+4 et 9n+7. L'ensemble des multiples de d est stable par combinaisons linéaires à coefficients entiers (voir propriété 3 du cours), donc :

d divise
$$9 \times (5n + 4) + (-5) \times (9n + 7)$$
,

donc d divise 45n + 36 - 45n - 35 = 1. Or, les diviseurs de 1 sont -1 et 1, donc $d \in \{-1; 1\}$, ce qui prouve que les diviseurs communs de 5n + 4 et 9n + 7 sont -1 et 1, et donc que 5n + 4 et 9n + 7 sont premiers entre eux.

VII a) On a
$$(x+2)(2y-1) = 2xy + 4y - x - 2$$
.
b) Soient x et y dans \mathbb{Z} ; $2xy + 4y - x = 7 \iff 2xy + 4y - x - 2 = 5$
 $\iff (x+2)(2y-1) = 5$ (voir question précédente)
 $\iff x+2$ divise 5 et $2y-1=\frac{5}{x+2}$ (noter que $x+2$ et $2y-1$ sont entiers car x et y le sont)
 $\iff x+2 \in \{-5;-1;1;5\}$ et $2y=1+\frac{5}{x+2}=\frac{x+7}{x+2}$
 $\iff x \in \{-7;-3;-1;3\}$ et $y=\frac{x+7}{2x+4}$
 $\iff (x,y) \in \{(-7,0);(-3,-2);(-1,3);(3,1)\}$

BONUS Un entier du type considéré s'écrit sous la forme $n=a+10\,000a$, où a est un entier dont l'écriture décimale comporte 4 chiffres (exemple : $16\,861\,686=a+10\,000a$ avec a=1686). On a donc $n=10\,001a$, d'où $n=137\times73a$, soit n=137k avec $k=73a\in\mathbb{Z}$, ce qui prouve que n est divisible par 137.