Correction de l'exercice VII du polycopié « Le raisonnement par récurrence »

Notons que : $(1+\sqrt{2})^2 = 1^2 + 2\sqrt{2} + \sqrt{2}^2$, soit $(1+\sqrt{2})^2 = 3+2\sqrt{2}$, et que $(1-\sqrt{2})^2 = 1^2 - 2\sqrt{2} + \sqrt{2}^2$, soit $(1-\sqrt{2})^2 = 3-2\sqrt{2}$.

- 1) On a $w_0 = (1 + \sqrt{2})^0 + (1 \sqrt{2})^0 = 1 + 1 = 2$, $w_1 = (1 + \sqrt{2})^1 + (1 - \sqrt{2})^1 = 1 + \sqrt{2} + 1 - \sqrt{2} = 2$ et $w_2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$ (voir calcul préliminaire).
- 2) Soit $n \in \mathbb{N}$; on a $w_{n+2} = (1 + \sqrt{2})^{n+2} + (1 \sqrt{2})^{n+2}$, d'où $w_{n+2} = (1 + \sqrt{2})^2 (1 + \sqrt{2})^n + (1 \sqrt{2})^2 (1 \sqrt{2})^n$, soit (voir calcul préliminaire) : $w_{n+2} = (3 + 2\sqrt{2})(1 + \sqrt{2})^n + (3 2\sqrt{2})(1 \sqrt{2})^n$.

D'autre part,
$$w_{n+1} = (1+\sqrt{2})^{n+1} + (1-\sqrt{2})^{n+1} = (1+\sqrt{2})(1+\sqrt{2})^n + (1-\sqrt{2})(1-\sqrt{2})^n$$
, donc $2w_{n+1} + w_n = (2+2\sqrt{2})(1+\sqrt{2})^n + (2-2\sqrt{2})(1-\sqrt{2})^n + (1+\sqrt{2})^n + (1-\sqrt{2})^n$, d'où $2w_{n+1} + w_n = (2+2\sqrt{2}+1)(1+\sqrt{2})^n + (2-2\sqrt{2}+1)(1-\sqrt{2})^n$, soit $2w_{n+1} + w_n = (3+2\sqrt{2})(1+\sqrt{2})^n + (3-2\sqrt{2})(1-\sqrt{2})^n$ et finalement $w_{n+2} = 2w_{n+1} + w_n$.

- **3)** Notons, pour $n \in \mathbb{N}$, $\mathscr{P}(n)$ la proposition : $(w_n \in \mathbb{N}^* \underline{\mathbf{et}} \ w_{n+1} \in \mathbb{N}^*)$.
 - Initialisation : on a $w_0 = 2 \in \mathbb{N}^*$ et $w_1 = 2 \in \mathbb{N}^*$, donc $\mathscr{P}(0)$ est vraie.
 - **Hérédité**: supposons que $\mathscr{P}(n)$ soit vraie à un certain rang $n \in \mathbb{N}$; On a $w_n \in \mathbb{N}^*$ et $w_{n+1} \in \mathbb{N}^*$. On en déduit que $2w_{n+1} \in \mathbb{N}^*$ (le double d'un entier strictement positif est aussi un entier strictement positif), puis que $2w_{n+1} + w_n \in \mathbb{N}^*$ (la somme de deux entiers strictement positifs est aussi un entier strictement positif). Ainsi, $w_{n+2} \in \mathbb{N}^*$ et donc $(w_{n+1} \in \mathbb{N}^* \text{ et } w_{n+2} \in \mathbb{N}^*)$, ce qui prouve que $\mathscr{P}(n+1)$ est vraie.
 - Cela prouve par récurrence que $\mathscr{P}(n)$ est vraie pour tout $n \in \mathbb{N}$ et donc qu'on a $w_n \in \mathbb{N}^*$, pour tout $n \in \mathbb{N}$.