Correction de l'exercice VI de la feuille « Le raisonnement par récurrence »

Notons pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ la proposition : $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}$.

- Initialisation: Si n = 1, on a $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} = \frac{1}{1^2} = 1$ et $2 \frac{1}{n} = 2 \frac{1}{1} = 1$ donc $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2 \frac{1}{n}$, ce qui prouve que $\mathcal{P}(1)$ est vraie.
- **Hérédité**: Supposons que $\mathcal{P}(n)$ soit vraie pour un certain entier $n \ge 1$. On a alors : $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \le 2 \frac{1}{n}$, d'où, en ajoutant $\frac{1}{(n+1)^2}$ de chaque côté : $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$ (*).

Or
$$(\xi) \Leftrightarrow \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2} \geqslant 0 \Leftrightarrow \frac{(n+1)^2}{n(n+1)^2} - \frac{n(n+1)}{n(n+1)^2} - \frac{n}{n(n+1)^2} \geqslant 0$$

 $\Leftrightarrow \frac{(n+1)^2 - n(n+1) - n}{n(n+1)^2} \geqslant 0 \Leftrightarrow \frac{n^2 + 2n + 1 - n^2 - n - n}{n(n+1)^2} \geqslant 0 \Leftrightarrow \frac{1}{n(n+1)^2} \geqslant 0$

Comme cette inégalité est bien vraie (car n est positif), l'inégalité (\natural) aussi.

• On a donc prouvé par récurrence que pour tout $n \in \mathbb{N}^*$, on a $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}$, ce qui permet de déduire que $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \leqslant 2$, vu que $2 - \frac{1}{n} \leqslant 2$.