Correction de l'exercice I.3 de la feuille « Le raisonnement par récurrence »

I.3

Notons pour $n \in \mathbb{N}^*$, $\mathscr{P}(n)$ la proposition : $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

- Initialisation: lorsque n vaut 1, on a $1^3 + \cdots + n^3 = 1^3 = 1$ et $\frac{n^2(n+1)^2}{4} = \frac{1^2 \times 2^2}{4} = 1$, ce qui prouve que $\mathcal{P}(1)$ est vraie.
- **Hérédité** : supposons que $\mathscr{P}(n)$ soit vraie à un certain entier $n \in \mathbb{N}^*$; on a donc : $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$, d'où en ajoutant $(n+1)^3$ de chaque côté : $1^3 + 2^3 + \dots + n^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3$ $\Rightarrow 1^3 + 2^3 + \dots + (n+1)^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4} = \frac{(n+1)^2[n^2 + 4(n+1)]}{4}$ $\Rightarrow 1^3 + 2^3 + \dots + (n+1)^3 = \frac{(n+1)^2(n^2 + 4n + 4)}{4} = \frac{(n+1)^2(n+2)^2}{4}$

 $\Rightarrow 1^3 + 2^3 + \dots + (n+1)^3 = \frac{(n+1)^2[(n+1)+1]^2}{4}$

pour tout entier $n \ge 1$.

• La proposition $\mathcal{P}(n)$ est vraie au rang 1 et est héréditaire, par conséquent elle est vraie