Opérations sur les limites : exercices d'entraînement corrigés

 $oxed{\mathbf{A}}$ Dans chaque cas, déterminer la limite de la suite (u_n) :

a)
$$u_n = \frac{1}{n}(n^2 + 10)$$

b)
$$u_n = \frac{2n^3 - n}{n^2 + n + 1}$$

c)
$$u_n = \frac{n^2 - 2n + 3}{4n^3 + 5}$$

d)
$$u_n = \frac{5^n + 3^n}{4^n}$$

e)
$$u_n = 4^n - 2^n$$

$$\mathbf{f)} \ u_n = \frac{n^2 - \sqrt{n}}{n\sqrt{n} + 3}$$

B On considère la suite (u_n) définie par $u_0 = 161$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 0, 6u_n + 8$.

1) Écrire un algorithme qui permet, à partir de la valeur de n entrée par l'utilisateur, de calculer une valeur approchée de u_n .

Le traduire en un programme (sur calculatrice ou dans le langage de son choix) et l'utiliser pour calculer u_{10} , u_{20} , u_{30} et u_{40} : quelle conjecture peut-on formuler quant à la convergence de la suite (u_n) ?

- 2) Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$, par $v_n = u_n 20$.
 - a) Montrer que (v_n) est une suite géométrique (préciser le premier terme et la raison).
 - **b)** Exprimer v_n en fonction de n.
 - c) Déterminer la limite de la suite (v_n) et en déduire celle de (u_n) .

CORRECTION

 \mathbf{A}

a) Pour
$$n \in \mathbb{N}^*$$
, on a $u_n = \frac{1}{n}(n^2 + 10) = \frac{n^2}{n} + \frac{10}{n} = n + \frac{10}{n}$.

•
$$\lim_{n \to +\infty} n = +\infty$$

• par produit $\lim_{n \to +\infty} \frac{10}{n} = \lim_{n \to +\infty} \left(10 \times \frac{1}{n}\right) = 10 \times 0 = 0$ d'où par somme : $\lim_{n \to +\infty} u_n = +\infty$

b) On a
$$u_n = \frac{n^2 \left(2n - \frac{1}{n}\right)}{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)} = \frac{2n - \frac{1}{n}}{1 + \frac{1}{n} + \frac{1}{n^2}}$$

$$\begin{array}{l}
\bullet \lim_{n \to +\infty} \frac{1}{n} = 0 \\
\bullet \lim_{n \to +\infty} \frac{1}{n^2} = 0
\end{array}$$
d'où par somme $\lim_{n \to +\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2}\right) = 1 + 0 + 0 = 1$

• par produit
$$\lim_{n \to +\infty} 2n = +\infty$$
• $\lim_{n \to +\infty} \frac{1}{n} = 0$
d'où par somme $\lim_{n \to +\infty} \left(2n - \frac{1}{n}\right) = +\infty$

On déduit de (\natural) et (\square) par quotient que $\lim_{n\to+\infty}u_n=+\infty$

c) Pour
$$n \in \mathbb{N}^*$$
, on a $u_n = \frac{n^2 - 2n + 3}{4n^3 + 5} = \frac{n^2 \left(1 - \frac{2}{n} + \frac{3}{n^2}\right)}{n^2 \left(4n + \frac{5}{n^2}\right)} = \frac{1 - \frac{2}{n} + \frac{3}{n^2}}{4n + \frac{5}{n^2}}$

• par produit
$$\lim_{n \to +\infty} \frac{-2}{n} = -2 \times 0 = 0$$

• par produit $\lim_{n \to +\infty} \frac{3}{n^2} = 3 \times 0 = 0$ d'où par somme $\lim_{n \to +\infty} \left(1 - \frac{2}{n} + \frac{3}{n^2}\right) = 1$

• par produit
$$\lim_{n \to +\infty} 4n = +\infty$$

• par produit $\lim_{n \to +\infty} \frac{5}{n^2} = 5 \times 0 = 0$ d'où par somme $\lim_{n \to +\infty} \left(4n + \frac{5}{n^2}\right) = +\infty$

On déduit de (ξ) et (\star) par quotient que $\lim_{n \to +\infty} u_n = 0$

Remarque: on pouvait également mettre en facteur n^3 en haut et en bas ou même mettre en facteur n^2 en haut et n^3 en bas.

$$\mathbf{d)} \text{ Pour tout } n \in \mathbb{N}, \text{ on a}: \frac{5^n + 3^n}{4^n} = \frac{5^n}{4^n} + \frac{3^n}{4^n} = \left(\frac{5}{4}\right)^n + \left(\frac{3}{4}\right)^n.$$
 Or $\frac{5}{4} \in]1; +\infty[$ et $\frac{3}{4} \in]-1; 1[$ donc $\lim_{n \to +\infty} \left(\frac{5}{4}\right)^n = +\infty$ et $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0.$ On déduit par somme que $\lim_{n \to +\infty} \frac{5^n + 3^n}{4^n} = +\infty$.

e) Pour tout
$$n \in \mathbb{N}$$
, on a : $4^n - 2^n = 4^n \left(1 - \frac{2^n}{4^n}\right) = 4^n \left[1 - \left(\frac{2}{4}\right)^n\right] = 4^n \left[1 - \left(\frac{1}{2}\right)^n\right]$. On a $\frac{1}{2} \in]-1$; 1[donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ et par somme : $\lim_{n \to +\infty} \left[1 - \left(\frac{1}{2}\right)^n\right] = 1 - 0 = 1$. Comme $4 \in]1$; $+\infty$ [, on a $\lim_{n \to +\infty} 4^n = +\infty$. On déduit de (\star) et (\natural) par produit que $\lim_{n \to +\infty} (4^n - 2^n) = +\infty$.

f) Pour tout
$$n \in \mathbb{N}^*$$
, on a $u_n = \frac{\frac{n^2 - \sqrt{n}}{n\sqrt{n}}}{\frac{n\sqrt{n} + 3}{n\sqrt{n}}} = \frac{\sqrt{n} - \frac{1}{n}}{1 + \frac{3}{n\sqrt{n}}} = \frac{\sqrt{n} - \frac{1}{n}}{1 + 3 \times \frac{1}{n} \times \frac{1}{\sqrt{n}}}.$

• Par produit et somme, on a
$$\lim_{n\to+\infty} \left(1+3\times\frac{1}{n}\times\frac{1}{\sqrt{n}}\right) = 1+3\times0\times0 = 1.$$

• On a
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$
 et $\lim_{n \to +\infty} \frac{1}{n} = 0$, donc par somme $\lim_{n \to +\infty} \left(\sqrt{n} - \frac{1}{n}\right) = +\infty$.
• Finalement, par quotient, $\lim_{n \to +\infty} u_n = +\infty$.

B 1) Algorithme permettant de calculer le terme de rang N de la suite u définie par $u_0 = 161$ et la relation de récurrence $u_{n+1} = 0, 6u_n + 8$:

Entrée	Demander N	
Initialisation	$U \leftarrow 161$	
Traitement	Pour k allant de 1 à N $U \leftarrow 0, 6 \times U + 8$	
	Fin Pour	
Sortie	Afficher U	

Et sa traduction en langage TI:

$$\begin{array}{l} \textbf{Prompt N} \\ \textbf{161} \rightarrow \textbf{U} \\ \textbf{For(I,1,N)} \\ \textbf{0,6*U+8} \rightarrow \textbf{U} \\ \textbf{End} \\ \textbf{Disp "U=",U} \end{array}$$

n	10	20	30	40
u_n	20,9	20,005	20,0003	20,0000002

Il semble donc que la suite (u_n) converge (très rapidement) vers 20.

2)a) Si
$$n \in \mathbb{N}$$
, on a $v_{n+1} = u_{n+1} - 20$, donc

$$v_{n+1} = 0,6u_n + 8 - 20$$

= 0,6u_n - 12
= 0,6(u_n - 20)

soit $v_{n+1} = 0, 6v_n$, ce qui prouve que (v_n) est une suite géométrique de raison 0, 6. Son terme initial est $v_0 = u_0 - 20 = 161 - 20 = 141$.

- **2)b)** D'après la question précédente, on a pour tout $n \in \mathbb{N}$: $v_n = v_0 \times 0, 6^n = 141 \times 0, 6^n$.
- **2)c)** (v_n) est une suite géométrique dont la raison appartient à l'intervalle]-1;1[, donc elle converge vers 0. Comme pour tout $n \in \mathbb{N}$, on a : $u_n = v_n + 20$, on déduit par somme que (u_n) converge vers 0 + 20 = 20.