Opérations sur les limites : exercices d'entraînement

 $oxed{\mathbf{A}}$ Dans chaque cas, déterminer la limite de la suite (u_n) :

a)
$$u_n = \frac{1}{n}(n^2 + 10)$$

b)
$$u_n = \frac{2n^3 - n}{n^2 + n + 1}$$

c)
$$u_n = \frac{n^2 - 2n + 3}{4n^3 + 5}$$

d)
$$u_n = \frac{5^n + 3^n}{4^n}$$

e)
$$u_n = 4^n - 2^n$$

$$\mathbf{f)} \ u_n = \frac{n^2 - \sqrt{n}}{n\sqrt{n} + 3}$$

B On considère la suite (u_n) définie par $u_0 = 161$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 0, 6u_n + 8$.

1) Écrire un algorithme qui permet, à partir de la valeur de n entrée par l'utilisateur, de calculer une valeur approchée de u_n .

Le traduire en un programme (sur calculatrice ou dans le langage de son choix) et l'utiliser pour calculer u_{10} , u_{20} , u_{30} et u_{40} : quelle conjecture peut-on formuler quant à la convergence de la suite (u_n) ?

- 2) Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$, par $v_n = u_n 20$.
 - a) Montrer que (v_n) est une suite géométrique (préciser le premier terme et la raison).
 - b) Exprimer v_n en fonction de n.
 - c) Déterminer la limite de la suite (v_n) et en déduire celle de (u_n) .