Correction du contrôle nº2 (mercredi 17 octobre 2018) I) 1) Soit $n \in \mathbb{N}^*$; on a $u = n^3 - 4 \times \frac{1}{\sqrt{n}} + (-100)$. On a far produit $\lim_{n \to +\infty} \left(-4 \times \frac{1}{\sqrt{n}}\right) = -4 \times 0 = 0$; d'autre part, lim $n^3 = +\infty$ et lim (-100) = -100, d'où par somme, lim $u = +\infty$. 2) Soit $n \in \mathbb{N}^*$; on a $u = n^3 \left(3 + (-1) \times \frac{1}{n}\right)$. On a $\lim_{n \to +\infty} \left(3 + (-1) \times \frac{1}{n}\right) = 3 + (-1) \times 0 = 3$, far produit et somme. D'autre part, lim n'=+00 donc par produit lim y=+00. $u = \frac{\frac{m^{2}-3m}{m^{3}}}{\frac{m^{3}+1}{m^{3}}} = \frac{m+(-3)\times\frac{1}{m^{2}}}{1+\frac{1}{m^{3}}}.$ Sar produit on a lim $(-3)\times\frac{1}{n^{2}}=-3\times0=0$; d'autre part lim $n=+\infty$ donc par somme lim $\left(n-3\times\frac{1}{n^2}\right)=+\infty$. Sar somme, on a également him $\left(1+\frac{1}{n^3}\right)=1+0=1$ et finalement par quotient, lim u=+14) Soit $n \in \mathbb{N}^*$; on a $u=\frac{n-\sqrt{n}}{n}=\frac{1-\frac{\sqrt{n}}{n}}{1+\frac{1}{n}}=\frac{1+(-1)\times\frac{1}{\sqrt{n}}}{1+\frac{1}{n}}$. On en deduit, par produit, somme et grothent, que line $u = \frac{1+(-1)\times 0}{1+0} = \frac{1}{1} = 1$. $-1 \le (-1)^m \le 1$ donc $m^2 - 1 \le m^2 + (-1)^m \le m^2 + 1$ at 5) Sort nEN*; on a comme $n^2+m>0$ (cor $n\geqslant 1$), on obtaint $\frac{n^2-1}{n^2+n} \leqslant \frac{n^2+(-1)^m}{n^2+n} \leqslant \frac{n^2+1}{n^2+n}$, soit $\frac{1+(-1)\times\frac{1}{n^2}}{1+\frac{1}{n}} \le u_n \le \frac{1+\frac{1}{n^2}}{1+\frac{1}{n}}$ (*). Or, par produit, somme et quotient, on a $\lim_{n \to +\infty} \frac{1 + (-1) \times \frac{1}{n}}{1 + \frac{1}{n}} = \frac{1 + (-1) \times 0}{1 + 0} = 1$ et $\lim_{n \to +\infty} \frac{1 + \frac{1}{n^2}}{1 + 1} = \frac{1 + 0}{1 + 0} = 1$. D'après (*), le théorème des « gendarmes » prouve que lim u = 1 II) A) 1) Som tout ne IN, on a un+ 12 = 120. A)2) Bour tout no IN, on a un+ = 90% de un + 5% de vn et ven+1 = 95% de ven + 10% de un , soit: , ce qui se traduit par les bornules suivoutes dans 7 vm+1=0,1 um+0,950m = 0.3 * B2 + 0.05 * C2le tableur -> m C3: = 0.1 * 62 + 0.95 * C2A) 3) D'après les données du tableur, le nombre de ruraux semble tendre vers 40 millions et le nombre de citadins semble tendre vers 80 millions. B)1) SinEN, on a un+= 0,9 m+0,05 2 et un+1=0,9un+0,05(120-un) = 0,9un + 6-0,05un = 0,85un+6 B)2) a) Notons, pour neN, S(n) la proposition: un > 40. · (2n a Mo = 30 > 40 done B(0) est wrone. Suffosons que P(n) soit vraie à un certain rang nEN; on a un 340, d'ai 0,85 m ≥ 0,85×40 (cor 0,85>0), soit 0,85 m ≥ 34, donc 0,85 m+6 ≥ 34+6, soit m+1 ≥ 40, ce qui prouve que B(n+1) est vraie.

- . Ainsi, la proposition 3(n) étant waie au rango et héréditaire, elle est waie pour tout entier naturel n.
- B)2)b) On a pour nEN, un+1-u = 0,85u+6-u = 6-0,15um.

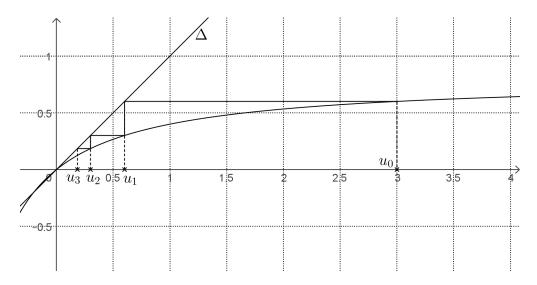
Comme u ≥ 40 (voir question précédente), on a -0,15 un € -0,15 × 40 (car -0,15 <0), soit -0,15 $u_n \le -6$, d'où $6-0,15 u_n \le 0$, soit $u_{n+1}-u_n \le 0$. On donc pour font $n \in \mathbb{N}$, $u_{n+1} \le u_n$, ce qui prouve la décroissance de la suite (u_n) .

- B)3)a) Soit me N; on a wo = un+1-40 = 0,85 un+6-40 = 0,85 un-34, d'où w_{n+1} = 0,85 (u_n - \frac{34}{0,85}) = 0,85 (u_n - 40), soit w_{n+1} = 0,85 w_n, ce qui prouve brin que (20) est une sente géométrique de rouson 0,85.
- B)3) b) an a done pour toutneth, we = w x 0,85 h. Or w = 40 = 90 40 = 50, donc $w = 50 \times 9,85^n$. Comme w = u - 40, on a $u = w + 40 = 40 + 50 \times 9,85^n$.
- B)4) Comme 9,85 €]-1;1[, on a lim 0,85 =0 donc par somme et produit lim $u = 40 + 50 \times 0 = 40$. D'antre part $9 = 120 - u_n$ donc par produit et $n \to +\infty$ Somme, lim 19 = 120 + (-1) × 40 = 80. Les conjectures sont donc validées.
- B)5) a) d'algorithme affiche la plus petite valur de l'entrie naturel n tel que un < 120-un, cist-à-dire tel que un < ve (correspond à l'année où la population rurale deviendra strictement inférieure à la propulation en ville).
- B) 5) b) D'après les données fournies par le tableur, la valeur affichée est n=6.
- ·III) 2) (an pent conjecturer que la sinte (un) converge vers 0.
 - 3) a) Notons que pour tout ne [N, un> 0 (donc en jourticulier un \$0); on a $u_{n+1} = \frac{q_1 \otimes u_n}{u_n + 1}$, donc $\frac{u_{n+1}}{u_n} = \frac{q_1 \otimes q_1}{u_n + 1}$ · Comme upo, on a unt1>1, d'on for stricte décroissance de $x \mapsto \frac{1}{x}$ sur $J_0; +\infty E$, $\frac{1}{u_1+1} < \frac{1}{1}$, soit $\frac{1}{u_1+1} < 1$, d'où $0.8 \times \frac{1}{u+1} < 0.8 \times 1$, soit $\frac{u_{n+1}}{u_n} < 0.8$, donc $\frac{u_{n+1}}{u_n} < 1$ (car 0.8 < 1). Comme (un) est à termes strictement positifs, ala prouve bren sa stricte décroissance.
 - 3) b) Notous, pour n∈N, S(n) la proposition: un ≤ 3 x 0,8°.
 - · On a 10 = 3 = 3 × 0,8° donc B(0) est wrone.
 - . Supposons que S(n) soit vrail à un certain rang n∈N; on a un < 3×0,8°. On a aussi $\frac{1}{u+1} < 1$ (voir (\Box)), d'où en multipliout membre à membre les deux inégalités précédentes (ce qui est liente car tous les membres sont Strictement portife): $\frac{u_m}{u_m+1} \leq 3 \times 0.8^m$, $\frac{0.8 u_m}{(car 0.8 > 0)} = \frac{0.8 u_m}{u_m+1} \leq 3 \times 0.8^m \times 0.8$,

Soit un+1 < 3x0,8n+1, ce qui pronve que B(n+1) est vrane.

· La proposition 3 est vrail au rougo et est héridataire, elle est donc vraie pour font nEN. 0 ≤ un ≤ 3 × 0,8 m. Comme 0,8 e 3-1; 1[, on a 3)c) Sourtout nell, on a done for produit line (3×0,8") = 3×0=0, ce qui prouve que line u = 0, en utilisant le théorème des « gendarmes».

Constructions (question III.1.)



Correction du bonus

A) Pour tout $n \in \mathbb{N}$, on a $u_n \ge 0$ et $v_n \le 1$ donc $u_n \times v_n \le u_n \times 1$ d'où $u_n \times v_n \le u_n \le 1$. Or $\lim_{n \to +\infty} (u_n \times v_n) = 1$ donc d'après le théorème des gendarmes, la suite u converge vers 1. Même chose pour la suite v en échangeant les rôles joués par u et v.

B) Remarque préliminaire : Notons E_n l'ensemble $\{0; 1; \dots; n\}$. Une partie de E_n contenant au moins la moitié des éléments de E_n contient au moins un élément supérieur ou égal à $\frac{n-1}{2}$. En effet, sinon elle ne contiendrait que des éléments strictement inférieurs à $\frac{n-1}{2}$, qui sont strictement minoritaires dans E_n .

Montrons alors par récurrence sur $n \in \mathbb{N}$, la proposition $\mathscr{P}(n)$:

pour tout entier
$$k \in [0; n], u_k \leqslant \frac{2}{k+2}$$
.

- $\mathscr{P}(0)$ est vraie vu que $u_0 = 1 = \frac{2}{0+2}$.
- Supposons que $\mathscr{P}(n)$ soit vraie à un certain rang $n \in \mathbb{N}$.

On sait qu'au moins la moitié des termes u_0, u_1, \ldots, u_n sont supérieurs ou égaux à $2u_{n+1}$. D'après la remarque préliminaire, il existe donc un entier k tel que $\frac{n-1}{2} \leqslant k \leqslant n$ vérifiant $2u_{n+1} \leqslant u_k$. Par hypothèse de récurrence, on a $u_k \leqslant \frac{2}{k+2}$. D'où $u_{n+1} \leqslant \frac{2}{2k+4}$. Or $k \geqslant \frac{n-1}{2}$ donc $2k+4 \geqslant n+3$ donc $u_{n+1} \leqslant \frac{2}{n+3}$, ce qui prouve que $\mathscr{P}(n+1)$ est vraie.

Bilan: Cela prouve par récurrence que $\mathscr{P}(n)$ est vraie pour tout $n \in \mathbb{N}$. On a alors pour tout $n \in \mathbb{N}$, $0 \le u_n \le \frac{2}{n+2}$. Le théorème des gendarmes entraı̂ne alors que (u_n) converge vers 0.