TS 5

Devoir surveillé n°2

 $\boxed{\mathbf{I}}$ Déterminer, en apportant toutes les justifications nécessaires, la limite de la suite (u_n) dans chaque cas :

1)
$$u_n = n^3 - \frac{4}{\sqrt{n}} - 100$$

2)
$$u_n = 3n^3 - n^2$$

3)
$$u_n = \frac{n^4 - 3n}{n^3 + 1}$$

$$4) \quad u_n = \frac{n - \sqrt{n}}{n + 1}$$

$$5) \quad u_n = \frac{n^2 + (-1)^n}{n^2 + n}$$

II Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins;
- chaque année, 10 % des ruraux émigrent à la ville;
- $\bullet \;\;$ chaque année, $5\,\%$ des citadins émigrent en zone rurale.

Pour tout entier naturel n, on note :

- u_n la population en zone rurale, en l'année 2010 + n, exprimée en millions d'habitants;
- v_n la population en ville, en l'année 2010 + n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

Partie A

- 1. Traduire le fait que la population totale est constante par une relation liant u_n et v_n .
- 2. On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n) .

 Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettent d'obtenir la feuille de calcul ci-dessous :

	A	В	C
1	n	Population en zone rurale	Population en ville
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875
5	3	70,706	49,294
6	4	66,100	53,900
7	5	62,185	57.815
8	6	58,857	61,143
9	7	56,029	63,971
10	8	53,625	66,375

...

11	9	51,581	68,419
12	10	49,844	70,156
13	11	48,367	71,633
14	12	47,112	72,888
15	13	46,045	73,955
16	14	45,138	74,862
17	15	44,368	75,632
18	16	43,713	76,287
19	17	43,156	76,844
20	18	42,682	77,318
21	19	42,280	77,720
22	20	41,938	78,062
		• • •	• • •
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

3. Quelles conjectures peut-on faire concernant l'évolution à long terme de cette population?

Partie B

- 1. Prouver que pour tout entier naturel n, on a $u_{n+1} = 0,85u_n + 6$.
- 2. (a) Démontrer par récurrence que pour tout entier naturel n, on a $u_n \ge 40$.
 - (b) Démontrer que (u_n) est une suite décroissante.
- 3. On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout entier $n \ge 0$.
 - (a) Démontrer que (w_n) est une suite géométrique de raison 0,85.
 - (b) En déduire l'expression de w_n puis de u_n en fonction de n.
- 4. Valider ou invalider les conjectures effectuées à la question 3. de la partie A.
- 5. On considère l'algorithme suivant :

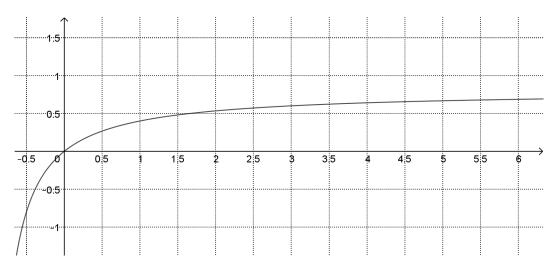
Entrée	n et u sont des nombres	
Initialisation	n prend la valeur 0	
	u prend la valeur 90	
Traitement	Tant que $u \geqslant 120 - u$ faire	
	n prend la valeur $n+1$	
	u prend la valeur $0,85 \times u + 6$	
	Fin Tant que	
Sortie	Afficher n	

- (a) Que fait cet algorithme?
- (b) Quelle valeur affiche-t-il?

NOM:_____

Cette feuille (complétée avec les constructions demandées au III.1.) est à rendre avec votre copie.

III On a représenté ci-dessous la fonction $f: x \mapsto \frac{0.8x}{x+1}$, définie sur $]-1; +\infty[$.



Soit (u_n) la suite définie par son terme initiale $u_0 = 3$ et la relation, valable pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \frac{0.8u_n}{u_n + 1} \,.$$

On admet que (u_n) est bien définie et qu'on a pour tout $n \in \mathbb{N}$, $u_n > 0$.

- 1. (a) Dans le repère ci-dessus, tracer la droite Δ d'équation y=x.
 - (b) Placer les points de l'axe (Ox) d'abscisses respectives u_0 , u_1 , u_2 et u_3 (laisser apparentes les traces de construction).
- 2. Que peut-on conjecturer quant à la convergence de la suite (u_n) ?
- 3. (a) Prouver que (u_n) est strictement décroissante.
 - (b) En utilisant un raisonnement par récurrence, prouver que pour tout $n \in \mathbb{N}$, $u_n \leq 3 \times 0.8^n$.
 - (c) Prouver alors la conjecture faite à la question 2.
- **■■■ Bonus** (à aborder uniquement si les exercices précédents ont été entièrement traités)
- **A)** Soient (u_n) et (v_n) deux suites telles que :
- pour tout $n \in \mathbb{N}$, $u_n \in [0;1]$ et $v_n \in [0;1]$,
- la suite produit $(u_n v_n)$ converge vers 1.

Montrer que les suites (u_n) et (v_n) convergent vers 1.

B) Soit (u_n) une suite de nombres réels positifs telle que $u_0 = 1$ et telle que, pour tout entier $n \ge 1$, au moins la moitié des termes u_0, u_1, \dots, u_{n-1} sont supérieurs ou égaux $2u_n$. Montrer que la suite (u_n) converge vers 0.