Devoir de Mathématiques

À rendre mardi 06/11

Soit F la fonction définie sur I =]-1; + ∞ [par $F(x) = \frac{-6x^3 + 6x^2 - 4x - 1}{(x+1)^4}$.

Montrer que F est dérivable*** sur I et que : $F'(x) = \frac{6x^3 - 30x^2 + 24x}{(x+1)^5}$.

Dresser alors le tableau des variations de F sur I.

II Soit la fonction $f: x \mapsto (x-2)\sqrt{2x-x^2}$.

 $\ensuremath{\mathbb{C}}$ désigne le graphe de f dans un repère orthonormé (unité : 4 cm).

- 1) Déterminer le domaine de définition \mathcal{D} de f.
- 2) Démontrer que f est dérivable*** sur I =]0;2[et que pour tout $x \in I$,

$$f'(x) = \frac{-2x^2 + 5x - 2}{\sqrt{2x - x^2}} .$$

- 3) Dresser le tableau des variations de f sur \mathcal{D} (justifications attendues).
- 4) Déterminer l'équation de la tangente T à T au point d'abscisse 1.
- 5) a) Soit $h \in]0;2]$. Montrer que $\frac{f(0+h)-f(0)}{h} = \frac{(h-2)\sqrt{2-h}}{\sqrt{h}}$.

Vers quoi tend $\frac{f(0+h)-f(0)}{h}$ lorsque h tend vers 0?

b) Soit $h \in [-2; 0[$. Montrer que $\frac{f(2+h) - f(2)}{h} = \sqrt{-h^2 - 2h}$.

Vers quoi tend $\frac{f(2+h)-f(2)}{h}$ lorsque h tend vers 0?

- c) Quelles conséquences graphiques peut-on tirer des deux résultats précédents ?
- 6) Tracer soigneusement T et T.

(***) Les élèves partis à Bilbao doivent rattraper ce qui a été fait en leur absence. En particulier, dans le cours, il est indiqué comment dériver une fonction du type u^n lorsque u est une fonction dérivable et n un entier relatif non nul, et comment dériver une fonction du type \sqrt{u} lorsque u est une fonction dérivable et strictement positive.