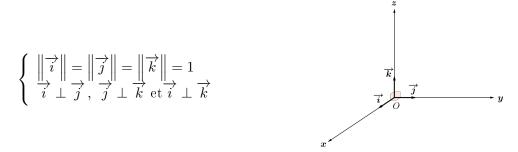
→ Suite du § IV (produit scalaire) du cours « Géométrie vectorielle dans l'espace »

Définition : le repère $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ est dit orthonormé (ou orthonormal) lorsque :



Dans toute la suite, on se place dans un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$

Propriété: soient deux vecteurs $\overrightarrow{u}(a,b,c)$ et $\overrightarrow{v}(a',b',c')$, alors $|\overrightarrow{u} \cdot \overrightarrow{v} = aa' + bb' + cc'|$

Conséquences : 1) $\|\overrightarrow{u}\| = \sqrt{a^2 + b^2 + c^2}$. En effet $\|\overrightarrow{u}\|^2 = \overrightarrow{u}^2 = a \times a + b \times b + c \times c$. 2) Si A et B sont deux points de l'espace, on a $\overrightarrow{AB}(x_B - x_A, y_B - y_A, z_B - z_A)$ et $AB = \|\overrightarrow{AB}\|$, d'où : $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$.

Exemple : soient les points A(1, -1, 1), B(-2, 0, 5) et C(4, 0, 3). Montrons que le triangle ABC est rectangle en A:

Propriétés algébriques : soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace k un réel. Alors :

- 1) symétrie : $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$
- 2) bilinéarité : $\begin{cases} \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} \\ \overrightarrow{u} \cdot (k\overrightarrow{v}) = k(\overrightarrow{u} \cdot \overrightarrow{v}) \end{cases}$ 3) identités remarquables : $\begin{cases} (\overrightarrow{u} \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) = \overrightarrow{u}^2 \overrightarrow{v}^2 \\ (\overrightarrow{u} + \overrightarrow{v})^2 = \overrightarrow{u}^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2 \\ (\overrightarrow{u} \overrightarrow{v})^2 = \overrightarrow{u}^2 2\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v}^2 \end{cases}$

Définition: un vecteur non nul \overrightarrow{n} est dit normal au plan \mathscr{P} lorsqu'il dirige une droite orthogonale à \mathscr{P} .

Remarques: 1) Un vecteur non nul \overrightarrow{n} est normal au plan \mathscr{P} si et seulement si il est est orthogonal à tout vecteur du plan \mathscr{P} .

- 2) Deux vecteurs normaux au même plan sont forcément colinéaires, vu que deux droites orthogonales au même plan sont parallèles.
- 3) Deux plans sont parallèles si et seulement si un vecteur normal de l'un est colinéaire à un vecteur normal de l'autre

Proposition : soit \mathscr{P} un plan de base $(\overrightarrow{u}, \overrightarrow{v})$ et $\overrightarrow{n} \neq \overrightarrow{0}$. Alors \overrightarrow{n} est normal à \mathscr{P} si et seulement si $\overrightarrow{n} \perp \overrightarrow{u}$ et $\overrightarrow{n} \perp \overrightarrow{v}$.

Démonstration:

Remarque : cela prouve donc la propriété 8 de la partie I du cours de géométrie dans l'espace : une droite est orthogonale à un plan si et seulement si elle est orthogonale à deux droites sécantes incluses dans ce plan.

Définition : deux plans sont dits *perpendiculaires* lorsque l'un deux contient une droite orthogonale à l'autre.

Propriété : deux plans sont perpendiculaires si et seulement si un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre.

$\overline{\mathbf{V}}$	Équation	cartésienne	d'un	plan
•	_qaa01011	car containe		Picii

Soit $\overrightarrow{n}(a,b,c)$ un vecteur non nul et $A(x_0,y_0,z_0)$ un point de l'espace. On note $\mathscr P$ le plan passant par A et possédant \overrightarrow{n} pour vecteur normal :

Propriété : M appartient à $\mathscr P$ si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Démonstration:

Conséquence:

On a donc prouvé le résultat suivant :

Propriété : tout plan $\mathscr P$ de vecteur normal $\overrightarrow{n}(a,b,c)$ possède une équation cartésienne de la forme : ax+by+cz+d=0.

Remarque : réciproquement si a, b, c et d sont des réels (avec a, b et c non simultanément nuls), alors l'ensemble des points M(x, y, z) de l'espace tels que ax + by + cz + d = 0 est un plan de vecteur normal $\overrightarrow{n}(a, b, c)$.

Exemples : 1) Soit \mathcal{P} le plan d'équation 2x - y + z + 1 = 0.

2) Déterminons une équation cartésienne du plan $\mathscr P$ passant par le point A et orthogonal à la droite (AB) avec A(1,-2,3) et B(0,1,1):

3) Soient les plans $\mathscr{P}: x-y+z+1=0$, $\mathscr{P}': 2x-2z+3=0$ et $\mathscr{P}'': -2x+2y-2z-7=0$.

4) Un plan parallèle au plan $(O, \overrightarrow{i}, \overrightarrow{j})$ a une équation de la forme Un plan parallèle au plan $(O, \overrightarrow{i}, \overrightarrow{k})$ a une équation de la forme Un plan parallèle au plan $(O, \overrightarrow{j}, \overrightarrow{k})$ a une équation de la forme

Remarque : soit \mathscr{P} un plan possédant \overrightarrow{n} pour vecteur normal et \mathscr{D} une droite possédant \overrightarrow{u} pour vecteur directeur, alors : $\mathscr{P} /\!\!/ \mathscr{D} \iff \overrightarrow{n} \cdot \overrightarrow{u} = 0$.