1°S1 (A.P.)

Autour du produit scalaire

 $\boxed{\mathrm{I}}$ Soit ABCD un carré de centre O tel que $\mathrm{AB}=a$.

1) Déterminer en fonction de a les produits scalaires :

 $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{AB} \cdot \overrightarrow{AD}$; $\overrightarrow{OC} \cdot \overrightarrow{OD}$; $\overrightarrow{AC} \cdot \overrightarrow{AO}$; $\overrightarrow{OC} \cdot \overrightarrow{OA}$ et $\overrightarrow{AD} \cdot \overrightarrow{OB}$.

2) Soit I (resp. J) le milieu de [AB] (resp. de [AD]).

Déterminer en fonction de a les produits scalaires : $\overrightarrow{IC} \cdot \overrightarrow{AB}$; $\overrightarrow{BJ} \cdot \overrightarrow{DC}$ et $\overrightarrow{ID} \cdot \overrightarrow{CD}$.

- 3) Déterminer en fonction de a les produits scalaires : $\overrightarrow{IC} \cdot \overrightarrow{BD}$ et $\overrightarrow{CJ} \cdot \overrightarrow{CI}$.
- 4) Démontrer que les droites (IC) et (BJ) sont orthogonales.

 $\overline{\text{II}}$ Soit ABC un triangle tel que AB = 39, AC = 55 et $\hat{A} = 60^{\circ}$.

- 1) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2) En utilisant le fait que $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$, calculer BC^2 , puis BC.
- 3) Calculer $\overrightarrow{CA} \cdot \overrightarrow{CB}$. En déduire les distances CH puis AH, où H le pied de la hauteur issue de A dans le triangle ABC.
- 4) En utilisant la calculatrice, déterminer une mesure approchée en degrés des angles \hat{B} et \hat{C} .

 \square Soit ABC un triangle et I le milieu de [BC]. On suppose que BC = 10 et que AI = 8.

- 1) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2) On suppose que AB = 6. Calculer AC.