T.V.I. : exercice

Le but de l'exercice est d'étudier les variations de la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = (x^3 - 7x - 21)\sqrt{x} .$$

- 1. Soit h la fonction définie sur \mathbb{R} par $h(x) = x^3 3x 3$.
 - (a) Dresser le tableau des variations de h sur \mathbb{R} .
 - (b) Montrer que l'équation h(x) = 0 possède une unique solution α dans \mathbb{R} . À l'aide de la calculatrice, fournir un encadrement d'amplitude 10^{-2} de α .
 - (c) En déduire le tableau des signes de h sur \mathbb{R} .
- (a) Établir que f est dérivable sur $]0; +\infty[$ et que pour tout $x>0, f'(x)=\frac{7h(x)}{2\sqrt{x}}.$
 - (b) Dresser alors le tableau des variations de f sur $[0; +\infty[$.
 - (c) Montrer que f possède un minimum sur $[0; +\infty[$, égal à $-2(2\alpha+9)\sqrt{\alpha}$.

\hookrightarrow CORRECTION :

1)a) h est dérivable sur \mathbb{R} par produit et somme et pour tout réel $x, h'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3x^2 - 3 = 3(x^2 - 1)$ 3(x-1)(x+1). On en déduit :

x	$-\infty$		-1		1	α	$+\infty$
x+1		_	0	+		+	
x-1		_		_	0	+	
h'(x)		+	0	_	0	+	
h	$-\infty$		-1		-5	0	$+\infty$

((détails :
$$h(-1) = (-1)^3 - 3 \times (-1) - 3 = -1$$
 et $h(1) = 1^3 - 3 \times 1 - 3 = -5$))

Si $x \neq 0$, on a $h(x) = x^3 \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right)$. Par produit et somme, on a $\lim_{x \to -\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to -\infty} x^3 = -\infty$, on obtient par produit : $\lim_{x \to -\infty} h(x) = -\infty$. De même $\lim_{x \to +\infty} \left(1 - \frac{3}{x^2} - \frac{3}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to +\infty} x^3 = +\infty$, on déduit par produit que $\lim_{x \to +\infty} h(x) = +\infty$

que $\lim_{x \to +\infty} h(x) = +\infty$.

- 1)b) D'après son tableau des variations, la fonction h possède un maximum égal à -1 sur $]-\infty;1]$. Par conséquent, pour tout $x \le 1$, on a $h(x) \le -1 < 0$, ce qui entraı̂ne que l'équation h(x) = 0 ne possède aucune solution dans $]-\infty;1]$.
- La fonction h est continue (car dérivable, cf 1.a.) et strictement croissante sur $]1;+\infty[$;

on a : h(1) = -5 et $\lim_{x \to +\infty} h(x) = +\infty$, donc $0 \in \left[h(1); \lim_{x \to +\infty} h(x) \right]$ et d'après le corollaire du T.V.I., l'équation h(x) = 0 possède une unique solution α dans $[1; +\infty[$.

• Bilan : l'équation h(x) = 0 possède pour unique solution α dans \mathbb{R} .

La calculatrice fournit : $2, 1 < \alpha < 2, 11$.

1)c) On déduit du tableau des variations de h (complété, cf 1.a.) :

x	$-\infty$		α		$+\infty$
h		-	0	+	

2)a) $x \stackrel{u}{\mapsto} x^3 - 7x - 21$ est dérivable sur $\mathbb R$ par produit et somme et $x \stackrel{v}{\mapsto} \sqrt{x}$ est dérivable sur $]0; +\infty[$, par conséquent f = uv est dérivable sur $]0; +\infty[$ de dérivée f' = u'v + uv'.

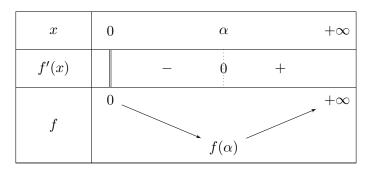
Ainsi, pour tout
$$x > 0$$
, $f'(x) = (3x^2 - 7)\sqrt{x} + (x^3 - 7x - 21) \times \frac{1}{2\sqrt{x}}$, soit :

$$f'(x) = \frac{2(3x^2 - 7)\sqrt{x^2 + x^3 - 7x - 21}}{2\sqrt{x}} = \frac{2x(3x^2 - 7) + x^3 - 7x - 21}{2\sqrt{x}} \text{ et finalement} :$$

$$f'(x) = \frac{6x^3 - 14x + x^3 - 7x - 21}{2\sqrt{x}} = \frac{7x^3 - 21x - 21}{2\sqrt{x}} = \frac{7h(x)}{2\sqrt{x}}.$$

$$f'(x) = \frac{6x^3 - 14x + x^3 - 7x - 21}{2\sqrt{x}} = \frac{7x^3 - 21x - 21}{2\sqrt{x}} = \frac{7h(x)}{2\sqrt{x}}$$

2)b) Comme 7 > 0 et $2\sqrt{x} > 0$ lorsque x > 0, on déduit que f' est du signe de h sur $]0; +\infty[$. D'où, d'après 1.c.:



((détail :
$$f(0) = (0^3 - 7 \times 0 - 21) \times \sqrt{0} = 0$$
))

Si $x \neq 0$, on a $x^3 - 7x - 21 = x^3 \left(1 - \frac{7}{x^2} - \frac{21}{x^3}\right)$. Par produit et somme, on a $\lim_{x \to +\infty} \left(1 - \frac{7}{x^2} - \frac{21}{x^3}\right) = 1 + 0 + 0 = 1$ et comme $\lim_{x \to +\infty} x^3 = +\infty$, on obtient par produit : $\lim_{x \to +\infty} (x^3 - 7x - 21) = +\infty$. Or $\lim_{x \to +\infty} \sqrt{x} = +\infty$, d'où par produit : $\lim_{x \to +\infty} f(x) = +\infty$.

2)c) On a
$$h(\alpha) = 0$$
 donc $\alpha^2 - 3\alpha - 3 = 0$, soit $\alpha^3 = 3\alpha + 3$.
Or $f(\alpha) = (\alpha^3 - 7\alpha - 21)\sqrt{\alpha}$, donc $f(\alpha) = (3\alpha + 3 - 7\alpha - 21)\sqrt{\alpha}$, soit :

$$f(\alpha) = (-4\alpha - 18)\sqrt{\alpha} = -2(2\alpha + 9)\sqrt{\alpha}.$$

D'après son tableau des variations (cf 2.b.), f possède donc bien un minimum égal à $-2(2\alpha+9)\sqrt{\alpha}$ sur $[0; +\infty[$.