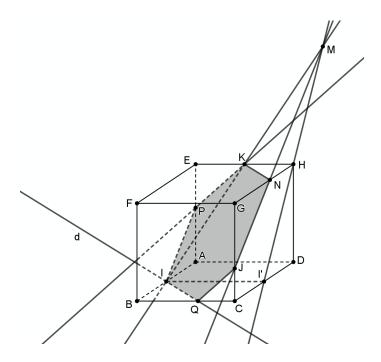
TS 6 2017/2018

Correction du devoir de Pâques

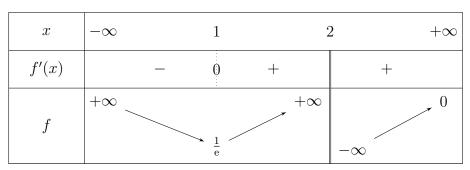
• Exercice I



- 1. (a) On a (II')//(KH) donc I, I', K et H sont coplanaires. Les droites (IK) et (I'H) sont donc coplanaires; comme elles ne sont pas parallèles, elles sont sécantes en un point M. On a $I' \in (CD)$ et $(CD) \subset (CGD)$ donc $I' \in (GCD)$. D'autre part $H \in (GCD)$ donc $(I'H) \subset (GCD)$. Comme $M \in (I'H)$, on donc $M \in (GCD)$, ce qui prouve que $(GCD) \cap (IK) = \{M\}$.
 - (b) On a $M \in (IK)$ et $(IK) \subset (IJK)$ donc $M \in (IJK)$, ce qui montre que $M \in (IJK) \cap (GCD)$. D'autre part, $J \in (GC)$ et $(GC) \subset (GCD)$ donc $J \in (GCD)$, ce qui prouve que $J \in (IJK) \cap (GCD)$. Ainsi, M et J appartiennent aux deux plans sécants (IJK) et (GCD), par conséquent $(IJK) \cap (GCD) = (MJ)$.
 - On a $(MJ) \subset (GCD)$ et $(GH) \subset (GCD)$ donc (MJ) et (GH) sont coplanaires; comme elles ne sont pas parallèles, elles sont sécantes en un point N. $N \in (GH)$ et $(GH) \subset (EFG)$ donc $N \in (EFG)$. $N \in (MJ)$ et $(MJ) \subset (IJK)$ donc $N \in (IJK)$. $K \in (EH)$ et $(EH) \subset (EFG)$ donc $K \in (EFG)$, ce qui prouve que $K \in (IJK) \cap (EFG)$. Ainsi, N et K appartiennent à la fois aux plans sécants (IJK) et (EFG), par conséquent $(IJK) \cap (EFG) = (KN)$.
- 2. (EFG)//(ABC) et $(IJK) \cap (EFG) = (KN)$ donc les plans (IJK) et (ABC) sont sécants et ont une droite d'intersection d telle que d//(KN). Or $I \in (AB)$ et (ABC) donc $I \in (ABC)$, d'où $I \in (IJK) \cap (ABC) = d$. Ainsi, d est la parallèle à (KN) passant par I
- 3. Les droites d et (BC) sont sécantes en un point Q; on a $(IJK) \cap (FGC) = (QJ)$.
 - $(IJK) \cap (AED)$ est la droite parallèle à (QJ) passant par K; celle-ci coupe (EA) en un point P.
 - On a alors $(IJK) \cap (EAB) = (PI)$.

• Exercice II

1. (a) La fonction f est dérivable sur $\mathbb{R}\setminus\{2\}$ par composition et quotient et : $\forall x \in \mathbb{R}\setminus\{2\}: f'(x) = \frac{(2-x)\times(-\mathrm{e}^{-x})-(-1)\times\mathrm{e}^{-x}}{(2-x)^2} = \frac{(x-1)\mathrm{e}^{-x}}{(2-x)^2} \; .$ Si $x \in \mathbb{R} \setminus \{2\}$, on a $e^{-x} > 0$ et $(2-x)^2 > 0$ donc f'(x) est du signe de x-1, d'où :



(Détail :
$$f(1) = \frac{e^{-1}}{2-1} = \frac{1}{e}$$
)

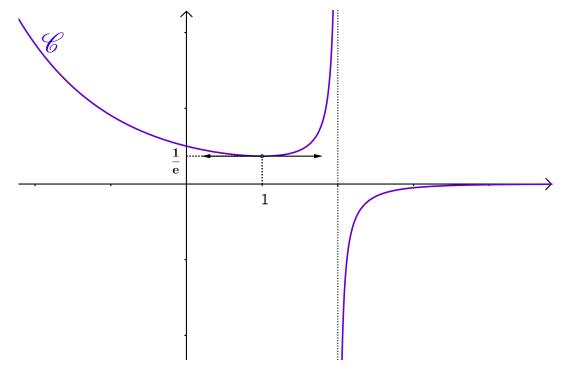
Justification des limites:

- Si $x \in \mathbb{R} \setminus \{2\}$, on a $f(x) = \frac{1}{(2-x)e^x}$.

 On a $\lim_{x \to +\infty} e^x = +\infty$ et par somme $\lim_{x \to +\infty} (2-x) = -\infty$ donc par produit $\lim_{x \to +\infty} (2-x)e^x = -\infty$ puis par quotient $\lim_{x \to +\infty} f(x) = 0$.

 Si x < 2, on a par produit $(2-x)e^x > 0$. D'autre part, $(2-x)e^x = 2e^x xe^x$.
- Or $\lim_{x \to -\infty} 2e^x = 2 \times 0 = 0$ et $\lim_{x \to -\infty} xe^x = 0$ donc par somme $\lim_{x \to -\infty} (2 x)e^x = 0^+$ puis par quotient $\lim_{x \to -\infty} f(x) = +\infty$.

Voici à titre de curiosité l'allure du graphe $\mathscr C$ de la fonction f:



(b) D'après le tableau des variations précédent, la fonction f est décroissante sur l'intervalle [0, 1]. Par conséquent, lorsque $0 \le x \le 1$, on a $f(1) \le f(x) \le f(0)$,

c'est-à-dire
$$\frac{1}{e} \leqslant f(x) \leqslant \frac{1}{2}$$
.

2. (a) Soit $(a,b) \in \mathbb{R}^2$ et $H: x \mapsto (ax+b)e^{-x}$. La fonction H est dérivable sur \mathbb{R} par composition, somme et produit et $\forall x \in \mathbb{R}$, $H'(x) = a \times e^{-x} + (ax+b) \times (-e^{-x}) = (-ax+a-b)e^{-x}$. Pour que H soit une primitive de $h: x \mapsto (x+2)e^{-x}$ sur \mathbb{R} (c'est-à-dire pour que H'=h sur \mathbb{R}), il suffit donc que les réels a et b soient solutions du système :

$$\begin{cases} -a = 1 \\ a - b = 2 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = -3 \end{cases}$$

Une primitive de h sur \mathbb{R} est donc $H: x \mapsto (-x-3)e^{-x}$.

$$\hookrightarrow \text{On a } J = \int_0^1 h(x) \, \mathrm{d}x \quad \text{donc} \quad J = [H(x)]_0^1 = [(-x-3)\mathrm{e}^{-x}]_0^1 \; , \; \text{d'où} :$$

$$J = -4\mathrm{e}^{-1} - (-3)\mathrm{e}^{-0} = 3 - \frac{4}{\mathrm{e}}.$$

(b) Si $x \in [0;1]$, on a $\frac{1}{e} \leqslant f(x) \leqslant \frac{1}{2}$ donc comme $x^2 \geqslant 0$, on a : $\frac{1}{e} x^2 \leqslant x^2 f(x) \leqslant \frac{1}{2} x^2 \ .$

Par croissance de l'intégrale (vu que $0 \le 1$), on déduit que :

$$\int_0^1 \frac{1}{e} x^2 dx \leqslant \int_0^1 x^2 f(x) dx \leqslant \int_0^1 \frac{1}{2} x^2 dx$$
 soit $\left[\frac{1}{3e} x^3\right]_0^1 \leqslant K \leqslant \left[\frac{1}{6} x^3\right]_0^1$, ou encore : $\frac{1}{3e} \leqslant K \leqslant \frac{1}{6}$.

- (c) On a $J + K = \int_0^1 (2+x) e^{-x} dx + \int_0^1 x^2 f(x) dx$, d'où par linéarité de l'intégrale : $J + K = \int_0^1 \left[(2+x) e^{-x} + \frac{x^2 e^{-x}}{2-x} \right] dx = \int_0^1 \frac{(2-x)(2+x) e^{-x} + x^2 e^{-x}}{2-x} dx$, d'où : $J + K = \int_0^1 \frac{(2^2-x^2) e^{-x} + x^2 e^{-x}}{2-x} dx = \int_0^1 \frac{4 e^{-x}}{2-x} dx = 4 \int_0^1 \frac{e^{-x}}{2-x} dx$ (par linéarité de l'intégrale) et finalement J + K = 4I.