Mobiliser quelques souvenirs de 1^{ère}S concernant les suites...

Correction du devoir de rentrée

A

1. (a) On a
$$u_1 = u_{0+1} = \frac{3u_0 + 1}{4} = \frac{3 \times 0 + 1}{4} = 0, 25,$$

$$u_2 = u_{1+1} = \frac{3u_1 + 1}{4} = \frac{3 \times 0, 25 + 1}{4} = 0, 4375, \text{ et}$$

$$u_3 = u_{2+1} = \frac{3u_2 + 1}{4} = \frac{3 \times 0, 4375 + 1}{4} = 0, 578125.$$

(b) Programme (calculatrice TI)

 \hookrightarrow En arrondissant à 10^{-7} près : $u_{10} \approx 0,9436865, u_{20} \approx 0,9968288$ et $u_{50} \approx 0,9999994$.

- (c) Il semble que le terme u_n se rapproche de plus en plus de la valeur 1, à mesure que le rang n augmente.
- 2. On a $u_1 u_0 = 0,25$ et $u_2 u_1 = 0,4375 0,25 = 0,1875$, donc $u_2 u_1 \neq u_1 u_0$, ce qui prouve que u n'est pas une suite arithmétique.
 - On a $u_0 = 0$; si la suite u était géométrique de raison q, on aurait $u_1 = q \times u_0 = 0$, ce qui n'est pas le cas. La suite u n'est donc pas géométrique.
- 3. (a) Soit $n \in \mathbb{N}$; on a $v_{n+1} = u_{n+1} 1 = \frac{3u_n + 1}{4} \frac{4}{4} = \frac{3u_n 3}{4} = \frac{3}{4}(u_n 1)$, d'où $v_{n+1} = \frac{3}{4}v_n$. La suite v est donc géométrique de raison $\frac{3}{4} = 0,75$. On a $v_0 = u_0 1 = -1$, donc pour tout $n \in \mathbb{N}$, $v_n = v_0 \times 0,75^n = -0,75^n$.
 - (b) Comme v est géométrique de raison 0, 75, on a pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} v_k = v_0 \frac{1 0, 75^{n+1}}{1 0, 75} = -\frac{1 0, 75^{n+1}}{0, 25} = 4 \times 0, 75^{n+1} 4.$ Pour tout $k \in \mathbb{N}$, on a $u_k = v_k + 1$ donc si $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k = (v_0 + 1) + (v_1 + 1) + \dots + (v_n + 1) = (v_0 + v_1 + \dots + v_n) + \underbrace{(1 + 1 + \dots + 1)}_{n+1 \text{ termes}},$

d'où
$$\sum_{k=0}^{n} u_k = 4 \times 0,75^{n+1} - 4 + n + 1 = n + 4 \times 0,75^{n+1} - 3.$$

В

1. On a
$$w_1 = w_{0+1} = \frac{3w_0 - 2}{2w_0 - 1} = \frac{3 \times 3 - 2}{2 \times 3 - 1} = \frac{7}{5}$$
, et
$$w_2 = w_{1+1} = \frac{3w_1 - 2}{2w_1 - 1} = \frac{3 \times \frac{7}{5} - 2}{2 \times \frac{7}{5} - 1} = \frac{21 - 10}{14 - 5} = \frac{11}{9}.$$

2. (a) On a
$$u_0 = \frac{1}{w_0 - 1} = \frac{1}{3 - 1} = \frac{1}{2}$$
, $u_1 = \frac{1}{w_1 - 1} = \frac{1}{\frac{7}{5} - 1} = \frac{1}{\frac{2}{5}} = \frac{5}{2}$, et $u_2 = \frac{1}{w_2 - 1} = \frac{1}{\frac{11}{9} - 1} = \frac{1}{\frac{2}{9}} = \frac{9}{2}$.

(b) Soit
$$n \in \mathbb{N}$$
; $u_{n+1} = \frac{1}{w_{n+1} - 1} = \frac{1}{\frac{3w_n - 2}{2w_n - 1} - 1} = \frac{1}{\frac{3w_n - 2}{2w_n - 1} - \frac{2w_n - 1}{2w_n - 1}}$, d'où $u_{n+1} = \frac{1}{\frac{w_n - 1}{2w_n - 1}} = \frac{2w_n - 1}{w_n - 1}$. On a alors $u_{n+1} - u_n = \frac{2w_n - 1}{w_n - 1} - \frac{1}{w_n - 1} = \frac{2w_n - 2}{w_n - 1} = 2$.

- (c) Le résultat précédent prouve que u est une suite arithmétique de raison 2. On a donc pour tout $n \in \mathbb{N}$, $u_n = u_0 + n \times 2 = \frac{1}{2} + 2n$. Notons que pour tout $n \in \mathbb{N}$, on a $u_n \geqslant \frac{1}{2}$, d'où $u_n \neq 0$.
- (d) Soit $n \in \mathbb{N}$; on a $u_n = \frac{1}{w_n 1}$, donc $u_n(w_n 1) = 1$, soit $u_n w_n u_n = 1$, d'où $u_n w_n = 1 + u_n$. Comme $u_n \neq 0$, on obtient $w_n = \frac{1 + u_n}{u_n}$, d'où $w_n = \frac{1 + \frac{1}{2} + 2n}{\frac{1}{2} + 2n}$ et finalement $w_n = \frac{4n + 3}{4n + 1}$.
- 3. (a) On a admis que pour tout $n \in \mathbb{N}$, $w_n > 1$. Soit $n \in \mathbb{N}$; $w_n \in]1$; $1,001[\iff w_n < 1,001 \iff \frac{4n+3}{4n+1} < 1,001 \iff 4n+3 < 1,001(4n+1)$, car 4n+1>0, vu que $n \geqslant 0$. Donc $w_n \in]1$; $1,001[\iff 4n+3 < 4,004n+1,001 \iff 1,999 < 0,004n \iff \frac{1,999}{0,004} < n$, car 0,004>0. Ainsi $w_n \in]1$; $1,001[\iff n>499,75 \iff n\geqslant 500$ (car $n\in \mathbb{N}$). L'entier $N_1=500$ répond donc à la question (en effet, observer qu'on a raisonné par équivalences logiques : si $n\geqslant 500$ est vrai, alors $w_n \in]1$; 1,001[aussi, et réciproquement).
 - (b) On va généraliser le raisonnement fait précédemment en remplaçant $\underbrace{1,001}_{1+0,001}$ par $1+\varepsilon$. Soit $n \in \mathbb{N}$; $w_n \in]1$; $1+\varepsilon[\iff w_n < 1+\varepsilon \iff \frac{4n+3}{4n+1} < 1+\varepsilon \iff 4n+3 < (1+\varepsilon)(4n+1)$, car 4n+1>0. Donc $w_n \in]1$; $1+\varepsilon[\iff 4n+3 < 4n+4\varepsilon n+1+\varepsilon \iff 2-\varepsilon < 4\varepsilon n \iff \frac{2-\varepsilon}{4\varepsilon} < n$, car $4\varepsilon > 0$. Ainsi $w_n \in]1$; $1+\varepsilon[\iff n > \frac{2-\varepsilon}{4\varepsilon}$. N'importe quel entier naturel N strictement supérieur à $\frac{2-\varepsilon}{4\varepsilon}$ répond à la question. En effet, si on a $n \geqslant N$, on a $n > \frac{2-\varepsilon}{4\varepsilon}$ et donc $w_n \in]1$; $1+\varepsilon[$ (là encore, bien observer qu'on a raisonné ci-dessus par équivalences).