Calculs avec un nombre « imaginaire »

Indication pour débuter l'exercice n°4

On a prouvé à la question 1)b) que $(\sqrt{3} + i)^3 = 8i$: nous allons utiliser ce résultat.

Notons que $2012 = 3 \times 670 + 2$ (division euclidienne de 2012 par 3).

On a
$$\left(\frac{\sqrt{3}+i}{2}\right)^{2012} = \left(\frac{\sqrt{3}+i}{2}\right)^{3\times670+2} = \left(\frac{\sqrt{3}+i}{2}\right)^{3\times670} \times \left(\frac{\sqrt{3}+i}{2}\right)^{2}$$
, d'où $\left(\frac{\sqrt{3}+i}{2}\right)^{2012} = \left[\left(\frac{\sqrt{3}+i}{2}\right)^{3}\right]^{670} \times \frac{(\sqrt{3}+i)^{2}}{4} = \left[\frac{(\sqrt{3}+i)^{3}}{8}\right]^{670} \times \frac{(\sqrt{3}+i)^{2}}{4}$

 \longrightarrow Essayez de finir.