Correction du contrôle n°3

 \mathbf{I}

1. (a) Le choix de l'urne est effectué au hasard, les deux choix étant équiprobables, donc $p(A) = \frac{1}{2}$.

L'urne a compte une boule rouge sur un total de 5 donc $p_A(R) = \frac{1}{5}$. D'où $p(A \cap R) = p(A) \times p_A(R) = \frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$.

- (b) D'après la formule des probabilités totales : $p(R) = p(A \cap R) + p\left(\overline{A} \cap R\right) = p(A \cap R) + p(B \cap R). \text{ Comme l'urne } b \text{ compte } 4$ boules rouges sur un total de 6, on a $p_B(R) = \frac{4}{6} = \frac{2}{3}$, d'où : $p(R) = p(A \cap R) + p(B) \times p_B(R) = \frac{1}{10} + \frac{1}{2} \times \frac{2}{3} = \frac{1}{10} + \frac{1}{3} = \frac{13}{30}.$
- (c) Il s'agit de calculer $p_R(A) = \frac{p(A \cap R)}{p(R)} = \frac{\frac{1}{10}}{\frac{13}{30}} = \frac{3}{13}$.
- 2. (a) L'urne a compte n boules rouges sur un total de 4+n donc $p_A(R)=\frac{n}{4+n}$. L'urne b compte 5-n boules rouges sur un total de (5-n)+2=7-n donc $p_B(R)=\frac{5-n}{7-n}$.
 - (b) D'après la formule des probabilités totales :

$$p(R) = p(A \cap R) + p(B \cap R) = p(A \cap R) + p(B) \times p_B(R) = \frac{1}{2} \times \frac{n}{4+n} + \frac{1}{2} \times \frac{5-n}{7-n}$$
d'où $p(R) = \frac{n(7-n) + (5-n)(4+n)}{2(4+n)(7-n)} = \frac{-2n^2 + 8n + 20}{2(4+n)(7-n)} = \frac{-n^2 + 4n + 10}{(4+n)(7-n)}.$

(c) Valeurs obtenues grâce à la calculatrice, arrondies à 10^{-2} près :

n	0	1	2	3	4	5
p(R)	0,36	0,43	0,47	0,46	0,42	0, 28

On obtient donc la valeur maximale pour p(R) lorsque n=2, ce qui revient à :

- ullet 2 boules rouges et 4 boules blanches dans l'urne a
- 5-2=3 boules rouges et 2 boules blanches dans l'urne b.

I) 1) f(x) existe si et seulement si $x-x^2 \ge 0 \iff x(1-x) \ge 0 \iff x \in [0;1]$ (*faire un tableau de signes: détails laissés au lecteur). Ainsi, D = [0;1]

from tout $\infty \in \mathbb{J}^0$; 1[, $f'(\infty) = 1 \times \sqrt{\infty - \infty^2} + (\infty - 1) \times \frac{1 - 2\infty}{2\sqrt{\infty - \infty^2}}$ $u'(\infty) \quad v(\infty) \quad v(\infty) \quad u(\infty) \quad v'(\infty) = \frac{v'(\infty)}{2\sqrt{w(\infty)}}$

 $d'ou f'(x) = \frac{2\sqrt{x-x^2}^2 + (x-1)(1-2x)}{2\sqrt{x-x^2}} = \frac{2(x-x^2) + x - 2x^2 - 1 + 2x}{2\sqrt{x-x^2}}$

et finalement, $f'(x) = \frac{-4x^2 + 5x - 1}{2\sqrt{x - x^2}}$.

3) Lorsque $x \in J^0$; 1[, on a $2\sqrt{x-x^2} > 0$ donc f'(x) est du signe de $-4x^2+5x-1$: trinôme dont le discriminant vout $\Delta = 9 > 0$ et les racines valent $\frac{1}{4}$ et 1.

Don;	x	- ∞	1/4	1	+ 00
	-4x2+5x-1		~ 0 4	- 0	-
	du signe de a	=-4-			/

x	0		1/4		1
6'(20)		_	þ	+	
f	0	/3	<u>√3√3</u>	7	, 0
<u> </u>	<u> </u>		16		

(Detail: $f(\frac{1}{4}) = (\frac{1}{4} - 1)\sqrt{\frac{1}{4} - \frac{1}{16}} = -\frac{3}{4}\sqrt{\frac{3}{16}} = -\frac{3\sqrt{3}}{16}$).

4) l'équation de T est y= f'(0,2)(x-0,2) + f(0,2).

Avec 6(0,2) = (0,2-1) \(\sigma_0,2-0,2^2 = -0,8 \times \sigma_0,16 = -0,8 \times 0,4 = -0,32

$$\text{if } \{ (0,2) = \frac{-4 \times 0, 2^2 + 5 \times 0, 2 - 1}{2 \sqrt{0,2 - 0,04}} = \frac{-0,16}{2 \sqrt{0,16}} = \frac{-0,16}{2 \times 0,4} = -0,2 ,$$

d'où T: y = -0,2(x-0,2)-0,32, soit T: y = -0,2x - 0,28.

1) $x \mapsto \infty + \frac{6}{x}$ est dérivable sur J_0 ; $+\infty$ [for quotient et somme, donc $f: x \mapsto \infty (x + \frac{6}{x})^s$ également par produit. On a f=uv avec $v=uv^5$, en notant $u: x \mapsto x$ et $uv: x \mapsto x + \frac{6}{x}$ donc f'=u'v+uv'=u'v+ux5uv'v', boit, pour tout x>0: $f'(x)=1\times \left(x+\frac{6}{x}\right)^s+x\times 5\left(1-\frac{6}{x^2}\right)\left(x+\frac{6}{x}\right)^4$, d'ou' $f'(x)=\left[x+\frac{6}{x}\right]\left(x+\frac{6}{x}\right)^4=\left(x+\frac{6}{x}+5x-\frac{30}{x}\right)\left(x+\frac{6}{x}\right)^4$ et finalement, $f'(x)=\left(6x-\frac{24}{x}\right)\left(x+\frac{6}{x}\right)^4=\frac{6x^2-24}{x}\left(x+\frac{6}{x}\right)^4$.

2) borsque $x \in]0;+\infty[$, on a x>0 et $(x+\frac{6}{x})^4>0$ donc f'(x) est du higne de $6x^2-24$, polynôme du se cond degré dont les racines sont -d et d (détails laissés an lecteur),

don	oc .	- 00	-2	a	4 %
	6x2-24	+ +	- 0 -	. 6	+
du d	signe de a	=6			

⊃c	0 2	t 🗢
6'(x)	- +	
l.		1
ן ס	6250	

(Détail: $f(2) = 2(2 + \frac{6}{2})^5 = 2 \times 5^5 = 6250$).

II) $f: x \mapsto \partial x + x^{-2}$ est dérivable sur $Jo; +\infty[$ far produit et somme et pour t out x>0, $f'(x) = 2 - 2x^{-2-1} = 2 - \frac{2}{x^3} = \frac{2(x^3-1)}{x^3}$. Lorsque $x \in Jo; +\infty[$, on a $x^3>0$ donc f'(x) est du signe de x^3-1 . Ou comme $x \mapsto x^3$ est strictement croissante sur \mathbb{R} , on a $x>1 \iff x^3>1^3=1$, d'où $f'(x)>0 \iff x>1$:

oc	0 1	+00
{)(∞)	– 9	+
10	3	1

D'après de tableau des variations ci-contre, f possède un minimum en x=1, égal \dot{a} : $f(1) = 2 \times 1 + \frac{1}{1^2} = 3.$ On en déduit que pour tout réel x > 0, $f(x) \ge 3$.

BONUS (éléments de correction)

A) $f: x \mapsto (63\sqrt{x} - 62)^{64}$ est dérivable our Jojtool de dérivée $f: x \mapsto 64 \times 63 \times \frac{1}{2\sqrt{x}} \times (63\sqrt{x} - 62)^{63}$ donc la limite cherchée est $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 64 \times 63 \times \frac{1}{2} = 2016$ B) On a $f_{n+1} = \sqrt{f_n}$ donc $f'_{n+1} = \frac{f'_n}{2\sqrt{f_n}}$, en particulier $f'_{n+1}(1) = \frac{1}{2}f'_n(1)$. So suit $(f'_n(1))_{m \ge 1}$ est donc géométrique raison $\frac{1}{2}$, d'où $\forall n \ge 1$, $f'_n(1) = \left(\frac{1}{2}\right)^{n-1}f'_n(1) = \left(\frac{1}{2}\right)^{n-1}$ de

Sait $f_m(1) = \frac{1}{2^n}$.