$\mathbf{TS2}$ - Correction du devoir de Mathématiques à rendre le 12/10/12

I • Partie A

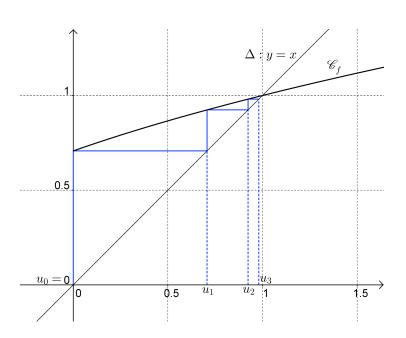
1) $u: x \mapsto \frac{x+1}{2} = \frac{1}{2}x + \frac{1}{2}$ est dérivable (car affine) et strictement positive sur $[0; +\infty[$ donc $f = \sqrt{u}$ est dérivable sur $[0; +\infty[$ de dérivée $f' = \frac{u'}{2\sqrt{u}}$. Ainsi si $x \in [0; +\infty[$, on a $f'(x) = \frac{\frac{1}{2}}{2\sqrt{\frac{x+1}{2}}} = \frac{1}{4\sqrt{\frac{x+1}{2}}} = \frac{1}{\sqrt{8x+8}}$.

2) Si $x \in [0; +\infty[$, on a f'(x) > 0 donc f est strictement croissante sur $[0; +\infty[$:

x	0		$+\infty$
f	$\frac{\sqrt{2}}{2}$	7	

(Détail :
$$f(0) = \sqrt{\frac{1+0}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
)

3)



• Partie B

1)b) Il semble que la suite (u_n) soit croissante et converge vers 1.

2) Prouvons par récurrence sur $n \in \mathbb{N}$, la proposition $\mathfrak{P}(n) : u_n \in [0,1]$.

• On a $u_0 = 0 \in [0; 1]$ donc $\mathfrak{P}(0)$ est vraie.

• Supposons que $\mathfrak{P}(n)$ soit vraie à un certain rang $n \in \mathbb{N}$; on a $0 \leqslant u_n \leqslant 1$ donc par

croissance de la fonction f sur $[0; +\infty[$, $f(0) \leqslant f(u_n) \leqslant f(1)$. Or $f(0) = \frac{\sqrt{2}}{2}$, $f(u_n) = u_{n+1}$ et $f(1) = \sqrt{\frac{1+1}{2}} = \sqrt{1} = 1$ donc $\frac{\sqrt{2}}{2} \leqslant u_{n+1} \leqslant 1$, d'où $0 \leqslant u_{n+1} \leqslant 1$ (vu que $\frac{\sqrt{2}}{2} \geqslant 0$), ce qui prouve que $\mathfrak{P}(n+1)$ est vraie.

• Cela prouve par récurrence que pour tout $n \in \mathbb{N}$, $u_n \in [0; 1]$.

3)a) Si
$$n \in \mathbb{N}$$
, on a: $1 - u_{n+1} = 1 - \sqrt{\frac{1+u_n}{2}}$. D'où:
$$1 - u_{n+1} = \frac{\left(1 - \sqrt{\frac{1+u_n}{2}}\right)\left(1 + \sqrt{\frac{1+u_n}{2}}\right)}{1 + \sqrt{\frac{1+u_n}{2}}} = \frac{1^2 - \sqrt{\frac{1+u_n}{2}}}{1 + \sqrt{\frac{1+u_n}{2}}} = \frac{1 - \frac{1+u_n}{2}}{1 + \sqrt{\frac{1+u_n}{2}}}$$
, soit: $1 - u_{n+1} = \frac{\frac{1-u_n}{2}}{1 + \sqrt{\frac{1+u_n}{2}}} = \frac{1-u_n}{2\left(1 + \sqrt{\frac{1+u_n}{2}}\right)}$.

3)b) On a $\sqrt{\frac{1+u_n}{2}} \geqslant 0$ donc $1+\sqrt{\frac{1+u_n}{2}} \geqslant 1$ d'où $\frac{1}{1+\sqrt{\frac{1+u_n}{2}}} \leqslant \frac{1}{1}=1$ par décroissance de la fonction inverse sur \mathbb{R}_+^* . Or $u_n \in [0;1]$ donc $u_n \leqslant 1$ et $\frac{1-u_n}{2} \geqslant 0$, on a par conséquent : $\frac{1-u_n}{2} \times \frac{1}{1+\sqrt{\frac{1+u_n}{2}}} \leqslant \frac{1-u_n}{2} \times 1$, soit $\frac{1-u_n}{2\left(1+\sqrt{\frac{1+u_n}{2}}\right)} \leqslant \frac{1-u_n}{2}$, c'est-à-dire : $1-u_{n+1} \leqslant \frac{1-u_n}{2}$.

3)c) Prouvons par récurrence sur $n \in \mathbb{N}$, la proposition $\mathfrak{R}(n) : 1 - u_n \leqslant \left(\frac{1}{2}\right)^n$.

- On a $1-u_0=1-0=1$ et $\left(\frac{1}{2}\right)^0=1$ donc $1-u_0\leqslant \left(\frac{1}{2}\right)^0$, ce qui prouve que $\Re(0)$ est vraie.
- Supposons que $\Re(n)$ soit vraie à un certain rang $n \in \mathbb{N}$; on a $1 u_n \leqslant \left(\frac{1}{2}\right)^n$ donc $\frac{1}{2} \times (1 u_n) \leqslant \frac{1}{2} \times \left(\frac{1}{2}\right)^n$ (car $\frac{1}{2} > 0$), soit $\frac{1 u_n}{2} \leqslant \left(\frac{1}{2}\right)^{n+1}$. Or d'après la question précédente, $1 u_{n+1} \leqslant \frac{1 u_n}{2}$ donc par transitivité de la relation d'ordre, on obtient $1 u_{n+1} \leqslant \left(\frac{1}{2}\right)^{n+1}$, ce qui établit que $\Re(n+1)$ est vraie.
- Cela prouve par récurrence que pour tout $n \in \mathbb{N}$, $1 u_n \leqslant \left(\frac{1}{2}\right)^n$.
- **3)d)** On a pour tout $n \in \mathbb{N}$: $0 \leq 1 u_n \leq \left(\frac{1}{2}\right)^n$. Comme $\frac{1}{2} \in]-1;1[$, on a $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ donc d'après le théorème « des gendarmes », $\lim_{n \to +\infty} (1 u_n) = 0$.

• On a $u_n = 1 - (1 - u_n)$ donc par somme, la suite (u_n) converge vers 1 - 0 = 1.

• Partie C

Notons pour $n \in \mathbb{N}$, $\mathfrak{B}(n)$ la proposition $u_n = \cos\left(\frac{\pi}{2^{n+1}}\right)$.

- On a $\cos\left(\frac{\pi}{2^{0+1}}\right) = \cos\left(\frac{\pi}{2}\right) = 0 = u_0$, donc $\mathfrak{B}(0)$ est vraie.
- Cela prouve par récurrence que pour tout $n \in \mathbb{N}$, $u_n = \cos\left(\frac{\pi}{2^{n+1}}\right)$.

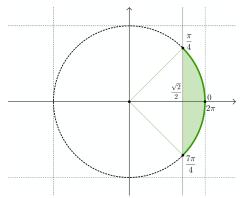
Ce résultat est cohérent avec le fait que (u_n) converge vers 1. En effet, $\lim_{n\to+\infty} \frac{\pi}{2^{n+1}} = 0$ (par quotient car $2 \in]1; +\infty[$) donc il est logique de penser que (u_n) converge vers $\cos 0 = 1$ (même si ce n'est pas si évident que cela, comme nous le verrons dans le chapitre consacré à la *continuité*).

II 1) • Si $x \in \mathbb{R}$, on a $f(-x) = 2\sqrt{2}\cos(-x) - \cos(-2x)$. Comme la fonction cos est paire, on a $\cos(-x) = \cos x$ et $\cos(-2x) = \cos(2x)$ donc $f(-x) = 2\sqrt{2}\cos x - \cos(2x) = f(x)$, ce qui prouve que f est une fonction paire. Le graphe de f est donc symétrique par rapport à l'axe des ordonnées.

• Si $x \in \mathbb{R}$, on a $f(x+2\pi) = 2\sqrt{2}\cos(x+2\pi) - \cos[2(x+2\pi)]$, soit : $f(x+2\pi) = 2\sqrt{2}\cos(x+2\pi) - \cos(2x+2\times 2\pi)$. Or la fonction cos est 2π -périodique donc $\cos(x+2\pi) = \cos x$ et $\cos(2x+2\times 2\pi) = \cos(2x)$ d'où $f(x+2\pi) = 2\sqrt{2}\cos x - \cos(2x) = f(x)$, ce qui établit que f est une fonction 2π -périodique : son graphe est donc invariant par translation de vecteur 2π \overrightarrow{i} .

2) On a
$$f'(x) = 2\sqrt{2}(-\sin x) - 2 \times \cos'(2x) = -2\sqrt{2}\sin x + 2\sin(2x)$$
.
Or $\sin(2x) = 2\sin x \cos x$ donc $f'(x) = 4\sin x \cos x - 2\sqrt{2}\sin x = 4\left(\cos x - \frac{\sqrt{2}}{2}\right)\sin x$.

3) Si
$$x \in [0; 2\pi]$$
, $\cos x - \frac{\sqrt{2}}{2} \geqslant 0 \iff \cos x \geqslant \frac{\sqrt{2}}{2} \iff x \in \left[0; \frac{\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$.



D'où:

x	0		$\frac{\pi}{4}$		π		$\frac{7\pi}{4}$		2π
$\sin x$	0		+		0		_		0
$\cos x - \frac{\sqrt{2}}{2}$		+	0		_		0	+	
f'(x)	0	+	0	_	0	+	0	_	0

Et finalement:

x	0	$\frac{\pi}{4}$		π		$\frac{7\pi}{4}$		2π
		2				2		
$\int f$	$2\sqrt{2}-1$	<i>></i>	¥	$-2\sqrt{2}-1$	7		V	$2\sqrt{2}-1$

(Détails :

$$f(0) = 2\sqrt{2}\cos 0 - \cos 0 = 2\sqrt{2} - 1$$

$$f\left(\frac{\pi}{4}\right) = 2\sqrt{2}\cos\frac{\pi}{4} - \cos\frac{\pi}{2} = 2\sqrt{2} \times \frac{\sqrt{2}}{2} - 0 = 2$$

$$f(\pi) = 2\sqrt{2}\cos\pi - \cos 2\pi = -2\sqrt{2} - 1$$

$$f\left(\frac{7\pi}{4}\right) = 2\sqrt{2}\cos\frac{7\pi}{4} - \cos\frac{7\pi}{2} = 2\sqrt{2} \times \frac{\sqrt{2}}{2} - 0 = 2$$

4)

