Correction des calculs d'intégrales n°5 et 6

- 5) Pour tout réel $x \ge 0$, on a $\frac{3}{\sqrt{10x+4}} = \frac{3}{10} \times \frac{10}{\sqrt{10x+4}}$, soit $\frac{3}{\sqrt{10x+4}} = \frac{3}{10} \times \frac{u'(x)}{\sqrt{u(x)}}$, avec $u: x \mapsto 10x+4$. Les primitives de $x \mapsto \frac{3}{\sqrt{10x+4}}$ sur $[0; +\infty[$ sont donc les fonctions de la forme $F = \frac{3}{10} \times 2\sqrt{u} + c = \frac{3}{5}\sqrt{u} + c$, où c est une constante réelle arbitraire. Par conséquent, $\int_0^{\frac{1}{2}} \frac{3}{\sqrt{10x+4}} dx = \left[\frac{3}{5}\sqrt{10x+4}\right]_0^{\frac{1}{2}} = \frac{3}{5}\sqrt{9} \frac{3}{5}\sqrt{4} = \frac{3}{5}$.
- **6)** Pour tout $x \in \mathbb{R}$, on a $\frac{\mathrm{e}^x}{(\mathrm{e}^x+1)^2} = u'(x) \times u(x)^{-2}$, avec $u: x \mapsto \mathrm{e}^x+1$. Les primitives de $x \mapsto \frac{\mathrm{e}^x}{(\mathrm{e}^x+1)^2}$ sur \mathbb{R} sont donc les fonctions de la forme $F = \frac{1}{-2+1}u^{-2+1} + c = -\frac{1}{u} + c$, où c est une constante réelle arbitraire. On a donc $\int_{-1}^1 \frac{\mathrm{e}^x}{(\mathrm{e}^x+1)^2} \, \mathrm{d}x = \left[-\frac{1}{\mathrm{e}^x+1}\right]_{-1}^1 = -\frac{1}{\mathrm{e}+1} + \frac{1}{\frac{1}{\mathrm{e}}+1} = -\frac{1}{\mathrm{e}+1} + \frac{\mathrm{e}}{1+\mathrm{e}} = \frac{\mathrm{e}-1}{\mathrm{e}+1}$.