Pour
$$n \in \mathbb{N}$$
, on note $u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$.

- 1) Calculer u_0, u_1, u_2, u_3 et u_4 .
- 2) Montrer que pour tout $k \in \mathbb{N}$, on a : $\int_0^1 (-x)^k dx = \frac{(-1)^k}{k+1}$.
- 3) En déduire que pour tout $n \in \mathbb{N}$, on a : $u_n = \int_0^1 \frac{1 (-x)^{n+1}}{1+x} dx$, puis que : $u_n = \ln 2 + (-1)^n I_n$, en notant $I_n = \int_0^1 \frac{x^{n+1}}{1+x} dx$.
- **4)** Établir que pour tout $n \in \mathbb{N}$ et tout $x \in [0; 1]$, on $a : 0 \leq \frac{x^{n+1}}{1+x} \leq x^{n+1}$. En déduire un encadrement de I_n .
- 5) Prouver que la suite (u_n) converge et déterminer sa limite.