TS (Spécialité)

Exercice:

Soit un entier n > 1, montrer que $n^{2017} - n$ possède au moins 18 facteurs premiers distincts.

Solution : soit un entier n > 1; montrons le résultat suivant :

Propriété : si p est un entier premier tel que $p-1 \mid 2016$, alors $p \mid n^{2017} - n$.

Démonstration : • Si $p \mid n$, il est clair que $p \mid n(n^{2016} - 1) = n^{2017} - n$.

- Si $p \not| n$, d'après le petit théorème de Fermat, on a $n^{p-1} \equiv 1$ [p]. Or comme $p-1 \mid 2016$, il existe $d \in \mathbb{N}^*$ tel que 2016 = d(p-1); on a alors $n^{d(p-1)} \equiv 1^d$ [p], soit $n^{2016} \equiv 1$ [p], ce qui signifie que $p \mid n^{2016} 1$. On en déduit que $p \mid n(n^{2016} 1) = n^{2017} n$
- \hookrightarrow Ainsi, tout entier premier tel que p-1 | 2016 est un facteur premier de $n^{2017}-n$. On peut alors vérifier que les 18 nombres premiers suivants répondent à la question :

2, 3, 5, 7, 13, 17, 19, 29, 37, 43, 73, 97, 113, 127, 337, 673, 1009 et 2017.